On large-time behavior of solutions to the compressible Navier-Stokes equations in the half space in R3

Yoshiyuki Kagei, Takayuki Kobayashi

    研究成果: ジャーナルへの寄稿学術誌査読

    82 被引用数 (Scopus)

    抄録

    The Navier-Stokes equation for compressible viscous fluid is considered on the half space in R3 under the zero-Dirichlet boundary condition for the momentum with initial data near an arbitrarily given equilibrium of positive constant density and zero momentum. Time decay properties in L2 norms for solutions of the linearized problem are investigated to obtain the rate of convergence in L2 norms of solutions to the equilibrium when initial data are sufficiently close to the equilibrium in H3 ∩ L1. Some lower bounds are derived for solutions to the linearized problem, one of which indicates a nonlinear phenomenon not appearing in the case of the Cauchy problem on the whole space.

    本文言語英語
    ページ(範囲)89-159
    ページ数71
    ジャーナルArchive for Rational Mechanics and Analysis
    165
    2
    DOI
    出版ステータス出版済み - 11月 1 2002

    !!!All Science Journal Classification (ASJC) codes

    • 分析
    • 数学(その他)
    • 機械工学

    フィンガープリント

    「On large-time behavior of solutions to the compressible Navier-Stokes equations in the half space in R3」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル