On-line coupling of sample preconcentration by LVSEP with gel electrophoretic separation on T-channel chips

Fumihiko Kitagawa, Saeko Kinami, Yuuki Takegawa, Isoshi Nukatsuka, Kenji Sueyoshi, Takayuki Kawai, Koji Otsuka

研究成果: ジャーナルへの寄稿学術誌査読

11 被引用数 (Scopus)


To achieve an on-line coupling of the sample preconcentration by a large-volume sample stacking with an electroosmotic flow pump (LVSEP) with microchip gel electrophoresis (MCGE), a sample solution, a background solution for LVSEP and a sieving solution for MCGE were loaded in a T-form channel and three reservoirs on PDMS microchips. By utilizing the difference in the flow resistance of the two channels, a low-viscosity sample and a viscous polymer solution were easily introduced into the LVSEP and MCGE channels, respectively. Fluorescence imaging of the sequential LVSEP-MCGE processes clearly demonstrated that a faster stacking of anionic fluorescein and successive introduction into the MCGE channel can be carried out on the T-channel chip. To evaluate the preconcentration performance, a conventional MCZE analysis of fluorescein on the cross-channel chip was compared with LVSEP-MCGE on the short T-channel chip, and as a result that the value of sensitive enhancement factor (SEF) was estimated to be 370. The repeatability of the peak height was good with the RSD value of 3.2%, indicating the robustness of the enrichment performance. In the successive LVSEP-MCGE analysis of φX174/HaeIII digest, the DNA fragments were well enriched to a sharp peak in the LVSEP channel, and they were separated in the MCGE channel, whose electropherogram was well-resembled with that in the conventional MCGE. The values of SEF for the DNA fragments were calculated to be ranging from 74 to 108. Thus, the successive LVSEP-MCGE analysis was effective for both preconcentrating and separating DNA fragments.

出版ステータス出版済み - 1月 1 2017

!!!All Science Journal Classification (ASJC) codes

  • 分析化学
  • 生化学
  • 臨床生化学


「On-line coupling of sample preconcentration by LVSEP with gel electrophoretic separation on T-channel chips」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。