On meromorphic continuation of local zeta functions

Joe Kamimoto, Toshihiro Nose

研究成果: Chapter in Book/Report/Conference proceedingConference contribution

抄録

We investigate meromorphic continuation of local zeta functions and properties of their poles. In the real analytic case, local zeta functions can be meromorphically continued to the whole complex plane and, moreover, properties of the poles have been precisely investigated. However, in the only smooth case, the situation of meromorphic continuation is very different. Actually, there exists an example in which a local zeta function has a singularity different from poles. We give a sufficient condition for that the first finitely many poles samely appear as in the real analytic case and exactly investigate properties of the first pole.

本文言語英語
ホスト出版物のタイトルComplex Analysis and Geometry - KSCV 2014
編集者Jisoo Byun, Filippo Bracci, Hervé Gaussier, Kang-Tae Kim, Nikolay Shcherbina, Kengo Hirachi
出版社Springer New York LLC
ページ187-195
ページ数9
ISBN(印刷版)9784431557432
DOI
出版ステータス出版済み - 1 1 2015
イベント10th Korean Conference on Several Complex Variables, KSCV 2014 - Gyeongju, 大韓民国
継続期間: 8 7 20148 11 2014

出版物シリーズ

名前Springer Proceedings in Mathematics and Statistics
144
ISSN(印刷版)2194-1009
ISSN(電子版)2194-1017

その他

その他10th Korean Conference on Several Complex Variables, KSCV 2014
国/地域大韓民国
CityGyeongju
Period8/7/148/11/14

All Science Journal Classification (ASJC) codes

  • 数学 (全般)

フィンガープリント

「On meromorphic continuation of local zeta functions」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル