On mod 3 triple Milnor invariants and triple cubic residue symbols in the Eisenstein number field

Fumiya Amano, Yasushi Mizusawa, Masanori Morishita

研究成果: Contribution to journalArticle査読

1 被引用数 (Scopus)

抄録

We introduce mod 3 triple Milnor invariants and triple cubic residue symbols for certain primes of the Eisenstein number field Q(-3), following the analogies between knots and primes. Our triple symbol generalizes both the cubic residue symbol and Rédei’s triple symbol, and describes the decomposition law of a prime in a mod 3 Heisenberg extension of degree 27 over Q(-3) with restricted ramification, which we construct concretely in the form similar to Rédei’s dihedral extension over Q. We also give a cohomological interpretation of our symbols by triple Massey products in Galois cohomology.

本文言語英語
論文番号7
ジャーナルResearch in Number Theory
4
1
DOI
出版ステータス出版済み - 3 1 2018

All Science Journal Classification (ASJC) codes

  • Algebra and Number Theory

フィンガープリント 「On mod 3 triple Milnor invariants and triple cubic residue symbols in the Eisenstein number field」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル