On mod p nonvanishing of special values of L-functions associated with cusp forms on GL2 over imaginary quadratic fields

研究成果: Contribution to journalReview article査読

抄録

Let f be a cusp formonGL2 over an imaginary quadratic field F of class number 1, and let p be an odd prime which satisfies some mild conditions. Then we show the existence of a finite-order Hecke character of F×A such that the algebraic part of the special value of L-functions of f at s=1 is a p-adic unit. This is an analogous result to the result of A. Ash and G. Stevens for GL2 over the field of rationals obtained in [AS].

本文言語英語
ページ(範囲)117-140
ページ数24
ジャーナルKyoto Journal of Mathematics
52
1
DOI
出版ステータス出版済み - 3 2012
外部発表はい

All Science Journal Classification (ASJC) codes

  • 数学 (全般)

フィンガープリント

「On mod p nonvanishing of special values of L-functions associated with cusp forms on GL2 over imaginary quadratic fields」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル