On sets of integers with prescribed gaps

Y. Baryshnikov, W. Stadje

研究成果: Contribution to journalArticle査読

抄録

For a fixed set I of positive integers we consider the set of paths (po,..., pk) of arbitrary length satisfying pl-pl-1∈I for l=2,..., k and p0=1, pk=n. Equipping it with the uniform distribution, the random path length Tn is studied. Asymptotic expansions of the moments of Tn are derived and its asymptotic normality is proved. The step lengths pl-pl-1 are seen to follow asymptotically a restricted geometrical distribution. Analogous results are given for the free boundary case in which the values of p0 and pk are not specified. In the special case I={m+1, m+2,...} (for some fixed m∈ℕ) we derive the exact distribution of a random "m-gap" subset of {1,..., n} and exhibit some connections to the theory of representations of natural numbers. A simple mechanism for generating a random m-gap subset is also presented.

本文言語英語
ページ(範囲)83-98
ページ数16
ジャーナルMonatshefte für Mathematik
116
2
DOI
出版ステータス出版済み - 6 1 1993
外部発表はい

All Science Journal Classification (ASJC) codes

  • 数学 (全般)

フィンガープリント

「On sets of integers with prescribed gaps」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル