On the analyticity and the almost periodicity of the solution to the Euler equations with non-decaying initial velocity

Okihiro Sawada, Ryo Takada

研究成果: ジャーナルへの寄稿記事

5 引用 (Scopus)

抜粋

The Cauchy problem of the Euler equations in the whole space is considered with non-decaying initial velocity in the frame work of B∞,11. It is proved that if the initial velocity is real analytic then the solution is also real analytic in spatial variables. Furthermore, a new estimate for the size of the radius of convergence of Taylor's expansion is established. The key of the proof is to derive the suitable estimates for the higher order derivatives of the bilinear terms. It is also shown the propagation of the almost periodicity in spatial variables.

元の言語英語
ページ(範囲)2148-2162
ページ数15
ジャーナルJournal of Functional Analysis
260
発行部数7
DOI
出版物ステータス出版済み - 4 1 2011

    フィンガープリント

All Science Journal Classification (ASJC) codes

  • Analysis

これを引用