On the discrepancy of generalized Niederreiter sequences

Shu Tezuka

研究成果: Contribution to journalArticle査読

18 被引用数 (Scopus)

抄録

First, we propose a notion of (t,e,s)-sequences in base b, where e is an integer vector (e1,.,es) with ei≥1 for i=1,.,s, which are identical to (t,s)-sequences in base b when e=(1,.,1), and show that a generalized Niederreiter sequence in base b is a (0,e,s)-sequence in base b, where ei is equal to the degree of the base polynomial for the i-th coordinate. Then, by using the signed splitting technique invented by Atanassov, we obtain a discrepancy bound for a (t,e,s)-sequence in base b. It follows that a (unanchored) discrepancy bound for the first N>1 points of a generalized Niederreiter sequence in base b is given as NDN≤(1/ s!aπi=1s2Šbei/2eilogb)(logN) s+O((logN)s-1), where the constant in the leading term is asymptotically much smaller than the one currently known.

本文言語英語
ページ(範囲)240-247
ページ数8
ジャーナルJournal of Complexity
29
3-4
DOI
出版ステータス出版済み - 2013

All Science Journal Classification (ASJC) codes

  • 代数と数論
  • 統計学および確率
  • 数値解析
  • 数学 (全般)
  • 制御と最適化
  • 応用数学

フィンガープリント

「On the discrepancy of generalized Niederreiter sequences」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル