On the kashaev invariant and the twisted reidemeister torsion of two-bridge knots

Tomotada Ohtsuki, Toshie Takata

研究成果: ジャーナルへの寄稿学術誌査読

15 被引用数 (Scopus)

抄録

It is conjectured that, in the asymptotic expansion of the Kashaev invariant of a hyperbolic knot, the first coefficient is represented by the complex volume of the knot complement, and the second coefficient is represented by a constant multiple of the square root of the twisted Reidemeister torsion associated with the holonomy representation of the hyperbolic structure of the knot complement. In particular, this conjecture has been rigorously proved for some simple hyperbolic knots, for which the second coefficient is presented by a modification of the square root of the Hessian of the potential function of the hyperbolic structure of the knot complement. In this paper, we define an invariant of a parametrized knot diagram as a modification of the Hessian of the potential function obtained from the parametrized knot diagram. Further, we show that this invariant is equal (up to sign) to a constant multiple of the twisted Reidemeister torsion for any two-bridge knot.

本文言語英語
ページ(範囲)853-952
ページ数100
ジャーナルGeometry and Topology
19
2
DOI
出版ステータス出版済み - 4月 10 2015

!!!All Science Journal Classification (ASJC) codes

  • 幾何学とトポロジー

フィンガープリント

「On the kashaev invariant and the twisted reidemeister torsion of two-bridge knots」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル