On the occurrence of burnout downstream of a flow obstacle in boiling two-phase upward flow within a vertical annular channel

Shoji Mori, Akira Tominaga, Tohru Fukano

研究成果: Contribution to journalArticle査読

2 被引用数 (Scopus)

抄録

If a flow obstacle, such as a spacer is placed in a boiling two-phase flow within a channel, the temperature on the surface of the heating tube is severely affected by the existence of the spacer. Under certain conditions, a spacer has a cooling effect, and under other conditions, the spacer causes dryout of the cooling water film on the heating surface. The burnout mechanism, which always occurs upstream of a spacer, however, remains unclear. In a previous paper [Fukano, T., Mori, S., Akamatsu, S., Baba, A., 2002. Relation between temperature fluctuation of a heating surface and generation of drypatch caused by a cylindrical spacer in a vertical boiling two-phase upward flow in a narrow annular channel. Nucl. Eng. Des. 217, 81-90], we reported that the disturbance wave has a significant effect on dryout and burnout occurrence and that a spacer greatly affects the behavior of the liquid film downstream of the spacer. In the present study, we examined in detail the influences of a spacer on the heat transfer and film thickness characteristics downstream of the spacer by considering the result in steam-water and air-water systems. The main results are summarized as follows:(1)The spacer averages the liquid film in the disturbance wave flow. As a result, dryout tends not to occur downstream of the spacer. This means that large temperature increases do not occur there. However, traces of disturbance waves remain, even if the disturbance waves are averaged by the spacer.(2)There is a high probability that the location at which burnout occurs is upstream of the downstream spacer, irrespective of the spacer spacing.(3)The newly proposed burnout occurrence model can explain the phenomena that burnout does occur upstream of the downstream spacer, even if the liquid film thickness tF m is approximately the same before and behind the spacer.

本文言語英語
ページ(範囲)2240-2249
ページ数10
ジャーナルNuclear Engineering and Design
237
23
DOI
出版ステータス出版済み - 12 2007
外部発表はい

All Science Journal Classification (ASJC) codes

  • Nuclear and High Energy Physics
  • Nuclear Energy and Engineering
  • Materials Science(all)
  • Safety, Risk, Reliability and Quality
  • Waste Management and Disposal
  • Mechanical Engineering

フィンガープリント 「On the occurrence of burnout downstream of a flow obstacle in boiling two-phase upward flow within a vertical annular channel」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル