On the security of a modified paillier public-key primitive

Kouichi Sakurai, Tsuyoshi Takagi

研究成果: Chapter in Book/Report/Conference proceedingConference contribution

3 被引用数 (Scopus)


Choi et al. proposed the modified Paillier cryptosystem (M-Paillier cryptosystem). They use a special public-key g ∈ ZZ/nZZ such that gϕ(n) = 1+n mod n2, where n is the RSA modulus. The distribution of the public key g is different from that of the original one. In this paper, we study the security of the usage of the public key. Firstly, we prove that the one-wayness of the M-Paillier cryptosystem is as intractable as factoring the modulus n, if the public key g can be generated only by the public modulus n. Secondly, we prove that the oracle that can generate the public-key factors the modulus n. Thus the public keys cannot be generated without knowing the factoring of n. The Paillier cryptosystem can use the public key g = 1+n, which is generated only from the public modulus n. Thirdly, we propose a chosen ciphertext attack against the M-Paillier cryptosystem. Our attack can factor the modulus n by only one query to the decryption oracle. This type of total breaking attack has not been reported for the original Paillier cryptosystem. Finally, we discuss the relationship between the M-Paillier cryptosystem and the Okamoto-Uchiyama scheme.

ホスト出版物のタイトルInformation Security and Privacy - 7th Australasian Conference, ACISP 2002, Proceedings
編集者Lynn Batten, Jennifer Seberry
出版社Springer Verlag
ISBN(印刷版)3540438610, 9783540438618
出版ステータス出版済み - 2002
イベント7th Australasian Conference on Information Security and Privacy, ACISP 2002 - Melbourne, オーストラリア
継続期間: 7 3 20027 5 2002


名前Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)


その他7th Australasian Conference on Information Security and Privacy, ACISP 2002

All Science Journal Classification (ASJC) codes

  • 理論的コンピュータサイエンス
  • コンピュータ サイエンス(全般)


「On the security of a modified paillier public-key primitive」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。