On the size of Lempel-Ziv and Lyndon factorizations

Juha Kärkkäinen, Dominik Kempa, Yuto Nakashima, Simon J. Puglisi, Arseny M. Shur

研究成果: Chapter in Book/Report/Conference proceedingConference contribution

6 被引用数 (Scopus)

抄録

Lyndon factorization and Lempel-Ziv (LZ) factorization are both important tools for analysing the structure and complexity of strings, but their combinatorial structure is very different. In this paper, we establish the first direct connection between the two by showing that while the Lyndon factorization can be bigger than the non-overlapping LZ factorization (which we demonstrate by describing a new, non-trivial family of strings) it is always less than twice the size.

本文言語英語
ホスト出版物のタイトル34th Symposium on Theoretical Aspects of Computer Science, STACS 2017
編集者Brigitte Vallee, Heribert Vollmer
出版社Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
ISBN(電子版)9783959770286
DOI
出版ステータス出版済み - 3 1 2017
イベント34th Symposium on Theoretical Aspects of Computer Science, STACS 2017 - Hannover, ドイツ
継続期間: 3 8 20173 11 2017

出版物シリーズ

名前Leibniz International Proceedings in Informatics, LIPIcs
66
ISSN(印刷版)1868-8969

その他

その他34th Symposium on Theoretical Aspects of Computer Science, STACS 2017
国/地域ドイツ
CityHannover
Period3/8/173/11/17

All Science Journal Classification (ASJC) codes

  • ソフトウェア

フィンガープリント

「On the size of Lempel-Ziv and Lyndon factorizations」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル