On the size of overlapping Lempel-Ziv and Lyndon factorizations

Yuki Urabe, Yuto Nakashima, Shunsuke Inenaga, Hideo Bannai, Masayuki Takeda

研究成果: Chapter in Book/Report/Conference proceedingConference contribution

2 被引用数 (Scopus)

抄録

Lempel-Ziv (LZ) factorization and Lyndon factorization are well-known factorizations of strings. Recently, Kärkkäinen et al. studied the relation between the sizes of the two factorizations, and showed that the size of the Lyndon factorization is always smaller than twice the size of the non-overlapping LZ factorization [STACS 2017]. In this paper, we consider a similar problem for the overlapping version of the LZ factorization. Since the size of the overlapping LZ factorization is always smaller than the size of the non-overlapping LZ factorization and, in fact, can even be an O(log n) factor smaller, it is not immediately clear whether a similar bound as in previous work would hold. Nevertheless, in this paper, we prove that the size of the Lyndon factorization is always smaller than four times the size of the overlapping LZ factorization.

本文言語英語
ホスト出版物のタイトル30th Annual Symposium on Combinatorial Pattern Matching, CPM 2019
編集者Nadia Pisanti, Solon P. Pissis
出版社Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
ISBN(電子版)9783959771030
DOI
出版ステータス出版済み - 6 1 2019
イベント30th Annual Symposium on Combinatorial Pattern Matching, CPM 2019 - Pisa, イタリア
継続期間: 6 18 20196 20 2019

出版物シリーズ

名前Leibniz International Proceedings in Informatics, LIPIcs
128
ISSN(印刷版)1868-8969

会議

会議30th Annual Symposium on Combinatorial Pattern Matching, CPM 2019
国/地域イタリア
CityPisa
Period6/18/196/20/19

All Science Journal Classification (ASJC) codes

  • ソフトウェア

フィンガープリント

「On the size of overlapping Lempel-Ziv and Lyndon factorizations」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル