On The Spectral Zeta Function For The Noncommutative Harmonic Oscillator

Takashi Ichinose, Masato Wakayama

研究成果: Contribution to journalArticle査読

10 被引用数 (Scopus)

抄録

The spectral zeta function for the so-called noncommutative harmonic oscillator is able to be meromorphically extended to the whole complex plane, having only one simple pole at the same point s = 1 where Riemann's zeta function ζ(s) has, and possesses a trivial zero at each nonpositive even integer. The essential part of its proof is sketched. A new result is also given on the lower and upper bounds of the eigenvalues of the noncommutative harmonic oscillator.

本文言語英語
ページ(範囲)421-432
ページ数12
ジャーナルReports on Mathematical Physics
59
3
DOI
出版ステータス出版済み - 6 2007

All Science Journal Classification (ASJC) codes

  • Statistical and Nonlinear Physics
  • Mathematical Physics

フィンガープリント 「On The Spectral Zeta Function For The Noncommutative Harmonic Oscillator」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル