On the upper critical dimension of lattice trees and lattice animals

Takashi Hara, Gordon Slade

研究成果: Contribution to journalArticle

46 被引用数 (Scopus)

抄録

We give a rigorous proof of mean-field critical behavior for the susceptibility (γ=1/2) and the correlation length (v=1/4) for models of lattice trees and lattice animals in two cases: (i) for the usual model with trees or animals constructed from nearest-neighbor bonds, in sufficiently high dimensions, and (ii) for a class of "spread-out" or long-range models in which trees and animals are constructed from bonds of various lengths, above eight dimensions. This provides further evidence that for these models the upper critical dimension is equal to eight. The proof involves obtaining an infrared bound and showing that a certain "square diagram" is finite at the critical point, and uses an expansion related to the lace expansion for the self-avoiding walk.

本文言語英語
ページ(範囲)1469-1510
ページ数42
ジャーナルJournal of Statistical Physics
59
5-6
DOI
出版ステータス出版済み - 6 1 1990
外部発表はい

All Science Journal Classification (ASJC) codes

  • Statistical and Nonlinear Physics
  • Mathematical Physics

フィンガープリント 「On the upper critical dimension of lattice trees and lattice animals」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル