On weak solutions of nonstationary boussinesq equations

Yoshiyuki Kagei

    研究成果: ジャーナルへの寄稿学術誌査読

    31 被引用数 (Scopus)

    抄録

    We study weak solutions of the initial and boundary value problems of the Boussinesq equations which describe the natural convection in a viscous incompressible fluid. We construct a global weak solution for the initial velocity in L2 and the initial temperature in L1. We show that the temperature θ(x, t) of our weak solution is Hölder continuous in x for almost every t > 0. In general, it is not known whether weak solutions are unique or not. We show that weak solutions are unique if they are in some Lebesgue space. We show, moreover, that weak solutions are regular if they belong to the uniqueness class.

    本文言語英語
    ページ(範囲)587-611
    ページ数25
    ジャーナルDifferential and Integral Equations
    6
    3
    出版ステータス出版済み - 1993

    !!!All Science Journal Classification (ASJC) codes

    • 分析
    • 応用数学

    フィンガープリント

    「On weak solutions of nonstationary boussinesq equations」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル