TY - JOUR
T1 - One-pot room-temperature synthesis of single-crystalline gold nanocorolla in water
AU - Soejima, Tetsuro
AU - Kimizuka, Nobuo
PY - 2009/10/14
Y1 - 2009/10/14
N2 - A room-temperature nanocarving strategy is developed for the fabrication of complex gold nanoplates having corolla- and propeller-like architectures. It is based on the simultaneous growth and etching of gold nanoplates in aqueous solution, which occur in the course of photoreduction of Au(OH)4 - ions. The presence of bromide ion, poly(vinylpyrrolidone) (PVP), and molecular oxygen is indispensable, where bromide ions play multiple roles. First, they promote formation of nanoplate structures by forming adlayers on the fcc(111) surface. Second, they facilitate oxidative dissolution of gold nanocrystals by converting the oxidized Au(I) species to soluble AuBr 2- ions, which lead to the formation of ultrathin nanocrevasses. PVP also stabilizes the nucleation of gold nanoplates. Although the overall reactions proceed in one-pot, the crystal growth and etching show interplay and occur with different kinetics due to changes in the concentration of Au(OH)4- and other species with time. Corolla- or propeller-like gold nanoplates formed under these conditions are single-crystalline, as indicated by selected area electron diffraction patterns and the observation of moiré fringes. The morphology of corolla- or propeller-like gold nanoplates is controllable depending on the concentration of bromide ion and PVP in the aqueous mixture. On the basis of these results, a preliminary mechanism is proposed which involves the concurrent crystal growth and oxidative etching on the surface of nanocrystals.
AB - A room-temperature nanocarving strategy is developed for the fabrication of complex gold nanoplates having corolla- and propeller-like architectures. It is based on the simultaneous growth and etching of gold nanoplates in aqueous solution, which occur in the course of photoreduction of Au(OH)4 - ions. The presence of bromide ion, poly(vinylpyrrolidone) (PVP), and molecular oxygen is indispensable, where bromide ions play multiple roles. First, they promote formation of nanoplate structures by forming adlayers on the fcc(111) surface. Second, they facilitate oxidative dissolution of gold nanocrystals by converting the oxidized Au(I) species to soluble AuBr 2- ions, which lead to the formation of ultrathin nanocrevasses. PVP also stabilizes the nucleation of gold nanoplates. Although the overall reactions proceed in one-pot, the crystal growth and etching show interplay and occur with different kinetics due to changes in the concentration of Au(OH)4- and other species with time. Corolla- or propeller-like gold nanoplates formed under these conditions are single-crystalline, as indicated by selected area electron diffraction patterns and the observation of moiré fringes. The morphology of corolla- or propeller-like gold nanoplates is controllable depending on the concentration of bromide ion and PVP in the aqueous mixture. On the basis of these results, a preliminary mechanism is proposed which involves the concurrent crystal growth and oxidative etching on the surface of nanocrystals.
UR - http://www.scopus.com/inward/record.url?scp=70349908280&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=70349908280&partnerID=8YFLogxK
U2 - 10.1021/ja904910m
DO - 10.1021/ja904910m
M3 - Article
C2 - 19757772
AN - SCOPUS:70349908280
SN - 0002-7863
VL - 131
SP - 14407
EP - 14412
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 40
ER -