Operational ocean prediction experiments for smart coastal fishing

Satoshi Nakada, Naoki Hirose, Tomoharu Senjyu, Ken ichi Fukudome, Toshihiro Tsuji, Noriyuki Okei

研究成果: ジャーナルへの寄稿学術誌査読

19 被引用数 (Scopus)


This paper describes a new combination of in situ, high-density observations gathered by fishermen, and a real-time, high-resolution (approx. 1.5. km) prediction model developed toward more efficient fishing. Flow field data can be successfully collected by observations from acoustic Doppler current profilers installed on commercial fishing boats, which uncover sub-mesoscale structures such as small (approx. 10. km) eddies in the eastern boundary current region of the Japan/East Sea. Frequent vertical temperature profiles observed by sensors attached to casting trawl nets indicate fine feature of summertime upwelling area associated with fishing grounds. These observational assets back up routine observations conducted by using stationary buoys, research vessels, commercial passenger lines, and tide gauges. These assets enable evaluation of system predictability and improvement through calibration of physical model parameters in addition to data assimilation using low-resolution remote-sensing satellites. Our prediction system is automated with high-end computers and enables better understanding of sub-mesoscale phenomena for more accurate determination of fishing conditions. High-resolution forecasts of hazardous rapid currents can be delivered via mobile phone to prevent damage to nets.

ジャーナルProgress in Oceanography
出版ステータス出版済み - 2月 2014

!!!All Science Journal Classification (ASJC) codes

  • 水圏科学
  • 地質学


「Operational ocean prediction experiments for smart coastal fishing」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。