Optimization of hexadecylpyridinium-modified montmorillonite for removal of perchlorate based on adsorption mechanisms

Wuhui Luo, Tsuyoshi Hirajima, Keiko Sasaki

研究成果: Contribution to journalArticle査読

17 被引用数 (Scopus)

抄録

Adsorption of perchlorate (ClO4-) onto hexadecylpyridinium-modified montmorillonite (OMt) was investigated by in situ and ex situ methods. For the in situ method, ClO4- was initially bound by hexadecylpyridinium (HDPy+) in the form of HDPy-ClO4 which together with the excess HDPy+ were simultaneously captured by Mt. The ex situ strategy was performed by adding synthesized OMt into ClO4--bearing solution, where conventionally dried OMt (II-OMt) and innovative OMt (I-OMt) without drying and washing procedure were compared as adsorbents. The adsorption capacity of ClO4- and amount of HDPy released into equilibrium solution were evaluated, where surfactant release was rarely addressed in previous publications. I-OMt showed relatively high adsorption capacity of ClO4- and negligible release of HDPy. The lower adsorption capacity of ClO4- onto II-OMt was caused by the washing procedure which removed the unstably anchored HDPy. Inhibition of HDPy release of I-OMt was explained by reconfiguration of HDPy after ClO4- adsorption as supported by results of X-ray diffraction and attenuated total reflection Fourier transform infrared spectroscopy. In addition, for anion adsorption onto conventionally synthesized OMt, the difference between the amounts of released counter ion and that of entrapped target anion is generally ignored. Such phenomenon was critically considered in this study, and the results showed that the difference between adsorbed ClO4- and released Cl- decreased with an increase of HDPy loading and was more significant in I-OMt. This is rationalized by the desorption of HDPy+ and formation of HDPy-ClO4 according to the results of 13C nuclear magnetic resonance spectra and the adsorption energy evaluated by the Dubinin-Radushkevich model.

本文言語英語
ページ(範囲)29-36
ページ数8
ジャーナルApplied Clay Science
123
DOI
出版ステータス出版済み - 4 1 2016

All Science Journal Classification (ASJC) codes

  • Geology
  • Geochemistry and Petrology

フィンガープリント 「Optimization of hexadecylpyridinium-modified montmorillonite for removal of perchlorate based on adsorption mechanisms」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル