TY - JOUR
T1 - Oral Factors Affecting Titanium Elution and Corrosion
T2 - An In Vitro Study Using Simulated Body Fluid
AU - Suito, Hideki
AU - Iwawaki, Yuki
AU - Goto, Takaharu
AU - Tomotake, Yoritoki
AU - Ichikawa, Tetsuo
PY - 2013/6/7
Y1 - 2013/6/7
N2 - Objectives:Ti, which is biocompatible and resistant to corrosion, is widely used for dental implants, particularly in patients allergic to other materials. However, numerous studies have reported on Ti allergy and the in vitro corrosion of Ti. This study investigated the conditions that promote the elution of Ti ions from Ti implants.Methods:Specimens of commercially pure Ti, pure nickel, a magnetic alloy, and a gold alloy were tested. Each specimen was immersed in a simulated body fluid (SBF) whose pH value was controlled (2.0, 3.0, 5.0, 7.4, and 9.0) using either hydrochloric or lactic acid. The parameters investigated were the following: duration of immersion, pH of the SBF, contact with a dissimilar metal, and mechanical stimulus. The amounts of Ti ions eluted were measured using a polarized Zeeman atomic absorption spectrophotometer.Results:Eluted Ti ions were detected after 24 h (pH of 2.0 and 3.0) and after 48 h (pH of 9.0). However, even after 4 weeks, eluted Ti ions were not detected in SBF solutions with pH values of 5.0 and 7.4. Ti elution was affected by immersion time, pH, acid type, mechanical stimulus, and contact with a dissimilar metal. Elution of Ti ions in a Candida albicans culture medium was observed after 72 h.Significance:Elution of Ti ions in the SBF was influenced by its pH and by crevice corrosion. The results of this study elucidate the conditions that lead to the elution of Ti ions in humans, which results in implant corrosion and Ti allergy.
AB - Objectives:Ti, which is biocompatible and resistant to corrosion, is widely used for dental implants, particularly in patients allergic to other materials. However, numerous studies have reported on Ti allergy and the in vitro corrosion of Ti. This study investigated the conditions that promote the elution of Ti ions from Ti implants.Methods:Specimens of commercially pure Ti, pure nickel, a magnetic alloy, and a gold alloy were tested. Each specimen was immersed in a simulated body fluid (SBF) whose pH value was controlled (2.0, 3.0, 5.0, 7.4, and 9.0) using either hydrochloric or lactic acid. The parameters investigated were the following: duration of immersion, pH of the SBF, contact with a dissimilar metal, and mechanical stimulus. The amounts of Ti ions eluted were measured using a polarized Zeeman atomic absorption spectrophotometer.Results:Eluted Ti ions were detected after 24 h (pH of 2.0 and 3.0) and after 48 h (pH of 9.0). However, even after 4 weeks, eluted Ti ions were not detected in SBF solutions with pH values of 5.0 and 7.4. Ti elution was affected by immersion time, pH, acid type, mechanical stimulus, and contact with a dissimilar metal. Elution of Ti ions in a Candida albicans culture medium was observed after 72 h.Significance:Elution of Ti ions in the SBF was influenced by its pH and by crevice corrosion. The results of this study elucidate the conditions that lead to the elution of Ti ions in humans, which results in implant corrosion and Ti allergy.
UR - http://www.scopus.com/inward/record.url?scp=84878805527&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84878805527&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0066052
DO - 10.1371/journal.pone.0066052
M3 - Article
C2 - 23762461
AN - SCOPUS:84878805527
SN - 1932-6203
VL - 8
JO - PLoS One
JF - PLoS One
IS - 6
M1 - e66052
ER -