Organelle-localizable fluorescent chemosensors for site-specific multicolor imaging of nucleoside polyphosphate dynamics in living cells

Yasutaka Kurishita, Takahiro Kohira, Akio Ojida, Itaru Hamachi

研究成果: ジャーナルへの寄稿学術誌査読

134 被引用数 (Scopus)

抄録

ATP and its derivatives (nucleoside polyphosphates (NPPs)) are implicated in many biological events, so their rapid and convenient detection is important. In particular, live cell detection of NPPs at specific local regions of cells could greatly contribute understanding of the complicated roles of NPPs. We report herein the design of two new fluorescent chemosensors that detect the dynamics of NPPs in specific regions of living cells. To achieve imaging of NPPs on plasma membrane surfaces (2-2Zn(II)), a lipid anchor was introduced into xanthene-based Zn(II) complex 1-2Zn(II), which was previously developed as a turn-on type fluorescent chemosensor for NPPs. Meanwhile, for subcellular imaging of ATP in mitochondria, we designed rhodamine-type Zn(II) complex 3-2Zn(II), which possesses a cationic pyronin ring instead of xanthene. Detailed spectroscopic studies revealed that 2-2Zn(II) and 3-2Zn(II) can sense NPPs with a several-fold increase of their fluorescence intensities through a sensing mechanism similar to 1-2Zn(II), involving binding-induced recovery of the conjugated form of the xanthene or pyronin ring. In live cell imaging, 2-2Zn(II) containing a lipid anchor selectively localized on the plasma membrane surface and detected the extracellular release of NPPs during cell necrosis induced by streptolysin O. On the other hand, rhodamine-type complex 3-2Zn(II) spontaneously localized at mitochondria inside cells, and sensed the local increase of ATP concentration during apoptosis. Multicolor images were obtained through simultaneous use of 2-2Zn(II) and 3-2Zn(II), allowing detection of the dynamics of ATP in different cellular compartments at the same time.

本文言語英語
ページ(範囲)18779-18789
ページ数11
ジャーナルJournal of the American Chemical Society
134
45
DOI
出版ステータス出版済み - 11月 14 2012

!!!All Science Journal Classification (ASJC) codes

  • 触媒
  • 化学 (全般)
  • 生化学
  • コロイド化学および表面化学

フィンガープリント

「Organelle-localizable fluorescent chemosensors for site-specific multicolor imaging of nucleoside polyphosphate dynamics in living cells」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル