Osmotic stress-induced remodeling of the cortical cytoskeleton

Caterina Di Ciano, Zilin Nie, Katalin Szászi, Alison Lewis, Takehito Uruno, Xi Zhan, Ori D. Rotstein, Alan Mak, András Kapus

研究成果: ジャーナルへの寄稿学術誌査読

128 被引用数 (Scopus)


Osmotic stress is known to affect the cytoskeleton; however, this adaptive response has remained poorly characterized, and the underlying signaling pathways are unexplored. Here we show that hypertonicity induces submembranous de novo F-actin assembly concomitant with the peripheral translocation and colocalization of cortactin and the actin-related protein 2/3 (Arp2/3) complex, which are key components of the actin nucleation machinery. Additionally, hyperosmolarity promotes the association of cortactin with Arp2/3 as revealed by coimmunoprecipitation. Using various truncation or phosphorylation-incompetent mutants, we show that cortactin translocation requires the Arp2/3- or the F-actin binding domain, but the process is independent of the shrinkage-induced tyrosine phosphorylation of cortactin. Looking for an alternative signaling mechanism, we found that hypertonicity stimulates Rac and Cdc42. This appears to be a key event in the osmotically triggered cytoskeletal reorganization, because 1) constitutively active small GTPases translocate cortactin, 2) Rac and cortactin colocalize at the periphery of hypertonically challenged cells, and 3) dominant-negative Rac and Cdc42 inhibit the hypertonicity-provoked cortactin and Arp3 translocation. The Rho family-dependent cytoskeleton remodeling may be an important osmoprotective response that reinforces the cell cortex.

ジャーナルAmerican Journal of Physiology - Cell Physiology
3 52-3
出版ステータス出版済み - 9月 2002

!!!All Science Journal Classification (ASJC) codes

  • 生理学
  • 細胞生物学


「Osmotic stress-induced remodeling of the cortical cytoskeleton」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。