抄録
We propose an approach to study non-Abelian Iwasawa theory, using the idea of Johnson homomorphisms in low dimensional topology. We introduce arithmetic analogues of Johnson homomorphisms/maps, called the p-Johnson homomorphisms/maps, associated to the Zassenhaus filtration of a pro-p Galois group over a Zp-extension of a number field. We give their cohomological interpretation in terms of Massey products in Galois cohomology.
元の言語 | 英語 |
---|---|
ページ(範囲) | 102-136 |
ページ数 | 35 |
ジャーナル | Journal of Algebra |
巻 | 479 |
DOI | |
出版物ステータス | 出版済み - 6 1 2017 |
Fingerprint
All Science Journal Classification (ASJC) codes
- Algebra and Number Theory
これを引用
p-Johnson homomorphisms and pro-p groups. / Morishita, Masanori; Terashima, Yuji.
:: Journal of Algebra, 巻 479, 01.06.2017, p. 102-136.研究成果: ジャーナルへの寄稿 › 記事
}
TY - JOUR
T1 - p-Johnson homomorphisms and pro-p groups
AU - Morishita, Masanori
AU - Terashima, Yuji
PY - 2017/6/1
Y1 - 2017/6/1
N2 - We propose an approach to study non-Abelian Iwasawa theory, using the idea of Johnson homomorphisms in low dimensional topology. We introduce arithmetic analogues of Johnson homomorphisms/maps, called the p-Johnson homomorphisms/maps, associated to the Zassenhaus filtration of a pro-p Galois group over a Zp-extension of a number field. We give their cohomological interpretation in terms of Massey products in Galois cohomology.
AB - We propose an approach to study non-Abelian Iwasawa theory, using the idea of Johnson homomorphisms in low dimensional topology. We introduce arithmetic analogues of Johnson homomorphisms/maps, called the p-Johnson homomorphisms/maps, associated to the Zassenhaus filtration of a pro-p Galois group over a Zp-extension of a number field. We give their cohomological interpretation in terms of Massey products in Galois cohomology.
UR - http://www.scopus.com/inward/record.url?scp=85012050958&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85012050958&partnerID=8YFLogxK
U2 - 10.1016/j.jalgebra.2017.01.028
DO - 10.1016/j.jalgebra.2017.01.028
M3 - Article
AN - SCOPUS:85012050958
VL - 479
SP - 102
EP - 136
JO - Journal of Algebra
JF - Journal of Algebra
SN - 0021-8693
ER -