Packed compact tries: A fast and efficient data structure for online string processing

Takuya Takagi, Shunsuke Inenaga, Kunihiko Sadakane, Hiroki Arimura

研究成果: Chapter in Book/Report/Conference proceedingConference contribution

5 被引用数 (Scopus)

抄録

We present a new data structure called the packed compact trie (packed c-trie) which stores a set S of k strings of total length n in n log σ + O(k log n) bits of space and supports fast pattern matching queries and updates, where σ is the alphabet size.Assume that α = logσ n letters are packed in a single machine word on the standard word RAM model, and let f(k, n) denote the query and update times of the dynamic predecessor/successor data structure of our choice which stores k integers from universe [1, n] in O(k log n) bits of space.Then, given a string of length m, our packed c-tries support pattern matching queries and insert/delete operations in O(m/α f(k, n)) worst-case time and in O(m/α +f(k, n)) expected time.Our experiments show that our packed c-tries are faster than the standard compact tries (a.k.a.Patricia trees) on real data sets.We also discuss applications of our packed c-tries.

本文言語英語
ホスト出版物のタイトルCombinatorial Algorithms - 27th International Workshop, IWOCA 2016, Proceedings
編集者Veli Mäkinen, Simon J. Puglisi, Leena Salmela
出版社Springer Verlag
ページ213-225
ページ数13
ISBN(印刷版)9783319445427
DOI
出版ステータス出版済み - 2016
イベント27th International Workshop on Combinatorial Algorithms, IWOCA 2016 - Helsinki, フィンランド
継続期間: 8 17 20168 19 2016

出版物シリーズ

名前Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
9843 LNCS
ISSN(印刷版)0302-9743
ISSN(電子版)1611-3349

その他

その他27th International Workshop on Combinatorial Algorithms, IWOCA 2016
Countryフィンランド
CityHelsinki
Period8/17/168/19/16

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • Computer Science(all)

フィンガープリント 「Packed compact tries: A fast and efficient data structure for online string processing」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル