TY - JOUR
T1 - Paleozoic subduction-accretion-closure histories in the west Mongolian segment of the Paleo-Asian ocean
T2 - Evidence from pressure-temperature-time-Protolith evolution of high-Mg and -Al gneisses in the Altai Mountains
AU - Nakano, Nobuhiko
AU - Osanai, Yasuhito
AU - Satish-Kumar, M.
AU - Adachi, Tatsuro
AU - Owada, Masaaki
AU - Jargalan, Sereenen
AU - Boldbaatar, Chimedtseie
AU - Yoshimoto, Aya
AU - Syeryekhan, Kundyz
N1 - Copyright:
Copyright 2014 Elsevier B.V., All rights reserved.
PY - 2014/5
Y1 - 2014/5
N2 - High-Mg, high-Al metasedimentary gneisses from the Altai Mountains, Mongolia, belonging to a subduction-accretion complex within the Central Asian Orogenic Belt can be divided into five rock types on the basis of mineral assemblages. Most rock types have high MgO and Al2O3 content and low CaO, Na2O, Rb, and Sr content. All rock types experienced a similar medium-pressure metamorphism characterized by a "hairpin"-shaped counterclockwise pressure-temperature path. U-Pb zircon and U-Th-Pb monazite ages indicated metamorphism at ca. 356 Ma and 277 Ma and inherited ages of 510-379 Ma, suggesting possible provenance to granitoids comparable to those in the Altai Mountains, China. The zircons that newly nucleated at ca. 356 Ma are characterized by high concentrations of light rare earth elements without a Ce anomaly-features common in zircons from hydrothermally altered rocks and a reducing environment. Petrological and geochronological results in this study suggest the following tectonic evolution: (1) continuous sub-duction and accretion of paleo-Asian oceanic crust during the Early Paleozoic, resulting in periodic granitoid mag-matism in the period 510-380 Ma and a continuous supply of granite-derived sediments providing detrital zircon and monazite grains to the accretionary prism; (2) ridge subduction during the Late Devonian-Early Carboniferous (ca. 356 Ma), resulting in hydrothermal metamorphism of the accretionary prism and interaction with seawater that produced rocks with unusual whole-rock chemistry; and (3) closure of the ocean leading to continental collision in the Early Permian (ca. 277 Ma), with part of the accretionary prism squeezed into lower crustal levels to form medium-pressure metamorphic rocks.
AB - High-Mg, high-Al metasedimentary gneisses from the Altai Mountains, Mongolia, belonging to a subduction-accretion complex within the Central Asian Orogenic Belt can be divided into five rock types on the basis of mineral assemblages. Most rock types have high MgO and Al2O3 content and low CaO, Na2O, Rb, and Sr content. All rock types experienced a similar medium-pressure metamorphism characterized by a "hairpin"-shaped counterclockwise pressure-temperature path. U-Pb zircon and U-Th-Pb monazite ages indicated metamorphism at ca. 356 Ma and 277 Ma and inherited ages of 510-379 Ma, suggesting possible provenance to granitoids comparable to those in the Altai Mountains, China. The zircons that newly nucleated at ca. 356 Ma are characterized by high concentrations of light rare earth elements without a Ce anomaly-features common in zircons from hydrothermally altered rocks and a reducing environment. Petrological and geochronological results in this study suggest the following tectonic evolution: (1) continuous sub-duction and accretion of paleo-Asian oceanic crust during the Early Paleozoic, resulting in periodic granitoid mag-matism in the period 510-380 Ma and a continuous supply of granite-derived sediments providing detrital zircon and monazite grains to the accretionary prism; (2) ridge subduction during the Late Devonian-Early Carboniferous (ca. 356 Ma), resulting in hydrothermal metamorphism of the accretionary prism and interaction with seawater that produced rocks with unusual whole-rock chemistry; and (3) closure of the ocean leading to continental collision in the Early Permian (ca. 277 Ma), with part of the accretionary prism squeezed into lower crustal levels to form medium-pressure metamorphic rocks.
UR - http://www.scopus.com/inward/record.url?scp=84902799428&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84902799428&partnerID=8YFLogxK
U2 - 10.1086/675665
DO - 10.1086/675665
M3 - Article
AN - SCOPUS:84902799428
SN - 0022-1376
VL - 122
SP - 283
EP - 308
JO - Journal of Geology
JF - Journal of Geology
IS - 3
ER -