Parallel precomputation with input value prediction for model predictive control systems

研究成果: Contribution to journalArticle査読

1 被引用数 (Scopus)

抄録

We propose a parallel precomputation method for real-time model predictive control. The key idea is to use predicted input values produced by model predictive control to solve an optimal control problem in advance. It is well known that control systems are not suitable for multi- or many-core processors because feedback-loop control systems are inherently based on sequential operations. However, since the proposed method does not rely on conventional thread-/data-level parallelism, it can be easily applied to such control systems without changing the algorithm in applications. A practical evaluation using three real-world model predictive control system simulation programs demonstrates drastic performance improvement without degrading control quality offered by the proposed method.

本文言語英語
ページ(範囲)2864-2877
ページ数14
ジャーナルIEICE Transactions on Information and Systems
E101D
12
DOI
出版ステータス出版済み - 12 2018

All Science Journal Classification (ASJC) codes

  • ソフトウェア
  • ハードウェアとアーキテクチャ
  • コンピュータ ビジョンおよびパターン認識
  • 電子工学および電気工学
  • 人工知能

フィンガープリント

「Parallel precomputation with input value prediction for model predictive control systems」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル