Parameterized algorithms for maximum cut with connectivity constraints

Hiroshi Eto, Tesshu Hanaka, Yasuaki Kobayashi, Yusuke Kobayashi

研究成果: 著書/レポートタイプへの貢献会議での発言

抜粋

We study two variants of Maximum Cut, which we call Connected Maximum Cut and Maximum Minimal Cut, in this paper. In these problems, given an unweighted graph, the goal is to compute a maximum cut satisfying some connectivity requirements. Both problems are known to be NP-complete even on planar graphs whereas Maximum Cut on planar graphs is solvable in polynomial time. We first show that these problems are NP-complete even on planar bipartite graphs and split graphs. Then we give parameterized algorithms using graph parameters such as clique-width, tree-width, and twin-cover number. Finally, we obtain FPT algorithms with respect to the solution size.

元の言語英語
ホスト出版物のタイトル14th International Symposium on Parameterized and Exact Computation, IPEC 2019
編集者Bart M. P. Jansen, Jan Arne Telle
出版者Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
ISBN(電子版)9783959771290
DOI
出版物ステータス出版済み - 12 2019
イベント14th International Symposium on Parameterized and Exact Computation, IPEC 2019 - Munich, ドイツ
継続期間: 9 11 20199 13 2019

出版物シリーズ

名前Leibniz International Proceedings in Informatics, LIPIcs
148
ISSN(印刷物)1868-8969

会議

会議14th International Symposium on Parameterized and Exact Computation, IPEC 2019
ドイツ
Munich
期間9/11/199/13/19

    フィンガープリント

All Science Journal Classification (ASJC) codes

  • Software

これを引用

Eto, H., Hanaka, T., Kobayashi, Y., & Kobayashi, Y. (2019). Parameterized algorithms for maximum cut with connectivity constraints. : B. M. P. Jansen, & J. A. Telle (版), 14th International Symposium on Parameterized and Exact Computation, IPEC 2019 [13] (Leibniz International Proceedings in Informatics, LIPIcs; 巻数 148). Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing. https://doi.org/10.4230/LIPIcs.IPEC.2019.13