Parameterized algorithms for the happy set problem

Yuichi Asahiro, Hiroshi Eto, Tesshu Hanaka, Guohui Lin, Eiji Miyano, Ippei Terabaru

研究成果: Chapter in Book/Report/Conference proceedingConference contribution

4 被引用数 (Scopus)

抄録

In this paper we introduce the Maximum Happy Set problem (MaxHS) and study its parameterized complexity: For an undirected graph G = (V,E) and a subset S ⊆ V of vertices, a vertex v is happy if v and all its neighbors are in S; and otherwise unhappy. Given an undirected graph G = (V,E) and an integer k, the goal of MaxHS is to find a subset S ⊆ V of k vertices such that the number of happy vertices is maximized. In this paper we first show that MaxHS is W[1]-hard when parameterized by k. Then, we prove the fixed-parameter tractability of MaxHS when parameterized by the tree-width, the clique-width and k, the neighborhood diversity, or the twin-cover number.

本文言語英語
ホスト出版物のタイトルWALCOM
ホスト出版物のサブタイトルAlgorithms and Computation - 14th International Conference, WALCOM 2020, Proceedings
編集者M. Sohel Rahman, Kunihiko Sadakane, Wing-Kin Sung
出版社Springer
ページ323-328
ページ数6
ISBN(印刷版)9783030398804
DOI
出版ステータス出版済み - 2020
イベント14th International Conference and Workshops on Algorithms and Computation, WALCOM 2020 - Singapore, シンガポール
継続期間: 3 31 20204 2 2020

出版物シリーズ

名前Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
12049 LNCS
ISSN(印刷版)0302-9743
ISSN(電子版)1611-3349

会議

会議14th International Conference and Workshops on Algorithms and Computation, WALCOM 2020
国/地域シンガポール
CitySingapore
Period3/31/204/2/20

All Science Journal Classification (ASJC) codes

  • 理論的コンピュータサイエンス
  • コンピュータ サイエンス(全般)

フィンガープリント

「Parameterized algorithms for the happy set problem」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル