Pathologies and liftability of Du Val del Pezzo surfaces in positive characteristic

Tatsuro Kawakami, Masaru Nagaoka

研究成果: ジャーナルへの寄稿学術誌査読

2 被引用数 (Scopus)

抄録

In this paper, we study pathologies of Du Val del Pezzo surfaces defined over an algebraically closed field of positive characteristic by relating them to their non-liftability to the ring of Witt vectors. More precisely, we investigate the condition (NB): all the anti-canonical divisors are singular, (ND): there are no Du Val del Pezzo surfaces over the field of complex numbers with the same Dynkin type, Picard rank, and anti-canonical degree, (NK): there exists an ample Z-divisor which violates the Kodaira vanishing theorem for Z-divisors, and (NL): the pair (Y, E) does not lift to the ring of Witt vectors, where Y is the minimal resolution and E is its reduced exceptional divisor. As a result, for each of these conditions, we determine all the Du Val del Pezzo surfaces which satisfy the given one.

本文言語英語
ページ(範囲)2975-3017
ページ数43
ジャーナルMathematische Zeitschrift
301
3
DOI
出版ステータス出版済み - 7月 2022
外部発表はい

!!!All Science Journal Classification (ASJC) codes

  • 数学 (全般)

フィンガープリント

「Pathologies and liftability of Du Val del Pezzo surfaces in positive characteristic」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル