Pentatricopeptide repeat motifs in the processing enzyme PRORP1 in Arabidopsis thaliana play a crucial role in recognition of nucleotide bases at TψC loop in precursor tRNAs

Takayoshi Imai, Takahiro Nakamura, Taku Maeda, Kaoru Nakayama, Xuzhu Gao, Takashi Nakashima, Yoshimitsu Kakuta, Makoto Kimura

研究成果: ジャーナルへの寄稿記事

14 引用 (Scopus)

抄録

Proteinaceous RNase P (PRORP1) in Arabidopsis thaliana is an endoribonuclease that catalyzes hydrolysis to remove the 5′-leader sequence of precursor tRNAs (pre-tRNAs). PRORP1 is composed of pentatricopeptide repeat (PPR) motifs, a central linker region, and a metal nuclease domain, the NYN domain. The PPR motifs are single-stranded RNA-binding motifs that recognize bases in a modular fashion. To obtain insight into the mechanism by which the PPR motifs in PRORP1 recognize a target sequence in catalysis, N-terminal successive deletion mutants were overproduced in Escherichia coli, and the resulting proteins were characterized in terms of enzymatic activity using chloroplast pre-tRNAPhe as a substrate. Although Δ89, in which all PPR motifs are present, retained the pre-tRNA cleavage activity, Δ129 devoid of the first PPR motif (PPR1) had significantly reduced cleavage activity. Likewise, deletions of the second (PPR2) or third PPR (PPR3) motif abolished the cleavage activity, suggesting that PPR motifs play a crucial role in catalysis. A proposed recognition code for PPR motifs predicted that PPR2-PPR5 in PRORP1 recognize C, A/U, A, and U, respectively, whose sequence is in good agreement with C56-A57-A58-A59 in the TψC loop in pre-tRNA Phe. Mutational analyses of nucleotide residues in the TψC loop as well as nucleotide-specifying residues (NSRs) in PPR motifs further suggested that PPR2 and PPR3 in PRORP1 favorably recognize nucleotide bases C56 and A57 at the TψC loop in pre-tRNAPhe, respectively. This prediction and previous biochemical data were combined to construct a fitting model of tRNA onto PRORP1, showing that the mechanism by which PRORP1 recognizes pre-tRNAs appears to be distinct from that by bacterial RNase P.

元の言語英語
ページ(範囲)1541-1546
ページ数6
ジャーナルBiochemical and Biophysical Research Communications
450
発行部数4
DOI
出版物ステータス出版済み - 8 8 2014

Fingerprint

RNA Precursors
Arabidopsis
Nucleotides
Ribonuclease P
RNA, Transfer, Phe
Enzymes
Processing
Catalysis
Endoribonucleases
Escherichia coli Proteins
Chloroplasts
Transfer RNA
Hydrolysis
Metals
RNA
Substrates

All Science Journal Classification (ASJC) codes

  • Biophysics
  • Biochemistry
  • Molecular Biology
  • Cell Biology

これを引用

@article{f59a6381851b480ba162ef07aa03466a,
title = "Pentatricopeptide repeat motifs in the processing enzyme PRORP1 in Arabidopsis thaliana play a crucial role in recognition of nucleotide bases at TψC loop in precursor tRNAs",
abstract = "Proteinaceous RNase P (PRORP1) in Arabidopsis thaliana is an endoribonuclease that catalyzes hydrolysis to remove the 5′-leader sequence of precursor tRNAs (pre-tRNAs). PRORP1 is composed of pentatricopeptide repeat (PPR) motifs, a central linker region, and a metal nuclease domain, the NYN domain. The PPR motifs are single-stranded RNA-binding motifs that recognize bases in a modular fashion. To obtain insight into the mechanism by which the PPR motifs in PRORP1 recognize a target sequence in catalysis, N-terminal successive deletion mutants were overproduced in Escherichia coli, and the resulting proteins were characterized in terms of enzymatic activity using chloroplast pre-tRNAPhe as a substrate. Although Δ89, in which all PPR motifs are present, retained the pre-tRNA cleavage activity, Δ129 devoid of the first PPR motif (PPR1) had significantly reduced cleavage activity. Likewise, deletions of the second (PPR2) or third PPR (PPR3) motif abolished the cleavage activity, suggesting that PPR motifs play a crucial role in catalysis. A proposed recognition code for PPR motifs predicted that PPR2-PPR5 in PRORP1 recognize C, A/U, A, and U, respectively, whose sequence is in good agreement with C56-A57-A58-A59 in the TψC loop in pre-tRNA Phe. Mutational analyses of nucleotide residues in the TψC loop as well as nucleotide-specifying residues (NSRs) in PPR motifs further suggested that PPR2 and PPR3 in PRORP1 favorably recognize nucleotide bases C56 and A57 at the TψC loop in pre-tRNAPhe, respectively. This prediction and previous biochemical data were combined to construct a fitting model of tRNA onto PRORP1, showing that the mechanism by which PRORP1 recognizes pre-tRNAs appears to be distinct from that by bacterial RNase P.",
author = "Takayoshi Imai and Takahiro Nakamura and Taku Maeda and Kaoru Nakayama and Xuzhu Gao and Takashi Nakashima and Yoshimitsu Kakuta and Makoto Kimura",
year = "2014",
month = "8",
day = "8",
doi = "10.1016/j.bbrc.2014.07.030",
language = "English",
volume = "450",
pages = "1541--1546",
journal = "Biochemical and Biophysical Research Communications",
issn = "0006-291X",
publisher = "Academic Press Inc.",
number = "4",

}

TY - JOUR

T1 - Pentatricopeptide repeat motifs in the processing enzyme PRORP1 in Arabidopsis thaliana play a crucial role in recognition of nucleotide bases at TψC loop in precursor tRNAs

AU - Imai, Takayoshi

AU - Nakamura, Takahiro

AU - Maeda, Taku

AU - Nakayama, Kaoru

AU - Gao, Xuzhu

AU - Nakashima, Takashi

AU - Kakuta, Yoshimitsu

AU - Kimura, Makoto

PY - 2014/8/8

Y1 - 2014/8/8

N2 - Proteinaceous RNase P (PRORP1) in Arabidopsis thaliana is an endoribonuclease that catalyzes hydrolysis to remove the 5′-leader sequence of precursor tRNAs (pre-tRNAs). PRORP1 is composed of pentatricopeptide repeat (PPR) motifs, a central linker region, and a metal nuclease domain, the NYN domain. The PPR motifs are single-stranded RNA-binding motifs that recognize bases in a modular fashion. To obtain insight into the mechanism by which the PPR motifs in PRORP1 recognize a target sequence in catalysis, N-terminal successive deletion mutants were overproduced in Escherichia coli, and the resulting proteins were characterized in terms of enzymatic activity using chloroplast pre-tRNAPhe as a substrate. Although Δ89, in which all PPR motifs are present, retained the pre-tRNA cleavage activity, Δ129 devoid of the first PPR motif (PPR1) had significantly reduced cleavage activity. Likewise, deletions of the second (PPR2) or third PPR (PPR3) motif abolished the cleavage activity, suggesting that PPR motifs play a crucial role in catalysis. A proposed recognition code for PPR motifs predicted that PPR2-PPR5 in PRORP1 recognize C, A/U, A, and U, respectively, whose sequence is in good agreement with C56-A57-A58-A59 in the TψC loop in pre-tRNA Phe. Mutational analyses of nucleotide residues in the TψC loop as well as nucleotide-specifying residues (NSRs) in PPR motifs further suggested that PPR2 and PPR3 in PRORP1 favorably recognize nucleotide bases C56 and A57 at the TψC loop in pre-tRNAPhe, respectively. This prediction and previous biochemical data were combined to construct a fitting model of tRNA onto PRORP1, showing that the mechanism by which PRORP1 recognizes pre-tRNAs appears to be distinct from that by bacterial RNase P.

AB - Proteinaceous RNase P (PRORP1) in Arabidopsis thaliana is an endoribonuclease that catalyzes hydrolysis to remove the 5′-leader sequence of precursor tRNAs (pre-tRNAs). PRORP1 is composed of pentatricopeptide repeat (PPR) motifs, a central linker region, and a metal nuclease domain, the NYN domain. The PPR motifs are single-stranded RNA-binding motifs that recognize bases in a modular fashion. To obtain insight into the mechanism by which the PPR motifs in PRORP1 recognize a target sequence in catalysis, N-terminal successive deletion mutants were overproduced in Escherichia coli, and the resulting proteins were characterized in terms of enzymatic activity using chloroplast pre-tRNAPhe as a substrate. Although Δ89, in which all PPR motifs are present, retained the pre-tRNA cleavage activity, Δ129 devoid of the first PPR motif (PPR1) had significantly reduced cleavage activity. Likewise, deletions of the second (PPR2) or third PPR (PPR3) motif abolished the cleavage activity, suggesting that PPR motifs play a crucial role in catalysis. A proposed recognition code for PPR motifs predicted that PPR2-PPR5 in PRORP1 recognize C, A/U, A, and U, respectively, whose sequence is in good agreement with C56-A57-A58-A59 in the TψC loop in pre-tRNA Phe. Mutational analyses of nucleotide residues in the TψC loop as well as nucleotide-specifying residues (NSRs) in PPR motifs further suggested that PPR2 and PPR3 in PRORP1 favorably recognize nucleotide bases C56 and A57 at the TψC loop in pre-tRNAPhe, respectively. This prediction and previous biochemical data were combined to construct a fitting model of tRNA onto PRORP1, showing that the mechanism by which PRORP1 recognizes pre-tRNAs appears to be distinct from that by bacterial RNase P.

UR - http://www.scopus.com/inward/record.url?scp=84906096038&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84906096038&partnerID=8YFLogxK

U2 - 10.1016/j.bbrc.2014.07.030

DO - 10.1016/j.bbrc.2014.07.030

M3 - Article

VL - 450

SP - 1541

EP - 1546

JO - Biochemical and Biophysical Research Communications

JF - Biochemical and Biophysical Research Communications

SN - 0006-291X

IS - 4

ER -