Performance Evaluation of Accurate Matrix-Matrix Multiplication on GPU Using Sparse Matrix Multiplications

Fumiya Ishiguro, Takahiro Katagiri, Satoshi Ohshima, Toru Nagai

研究成果: 書籍/レポート タイプへの寄稿会議への寄与

抄録

Basic Linear Algebra Subprograms (BLAS) is a frequently used numerical library for linear algebra computations. However, it places little emphasis on computational accuracy, especially with respect to the accuracy assurance of the results. Consequently, a high-precision matrix-matrix multiplications algorithm that assures the precision by double precision operation is proposed. In this study, we proposed to calculate sub-matrix computations generated by accurate matrix-matrix multiplication on GPU. We contribute the following two points: (1) We evaluate the performance of sparse matrix - dense matrix multiplication (SpMM) using sparse matrix - vector multiplications on GPU with the property of allowing dense matrices to be transformed into sparse matrices during the accurate matrix - matrix multiplication algorithm; (2) We evaluate above SpMM using sparse matrix - sparse matrix multiplications (SpMxSpM) on GPU. Results on the Reedbush-H supercomputer system at The University of Tokyo indicate that (1) The implementation of SpMM in the CRS format achieves a 3.24-times speedup on GPU compared with a CPU and (2) The implementation of SpMxSpM achieves a 8.44-times speedup compared with SpMM.

本文言語英語
ホスト出版物のタイトルProceedings - 2020 8th International Symposium on Computing and Networking Workshops, CANDARW 2020
出版社Institute of Electrical and Electronics Engineers Inc.
ページ178-184
ページ数7
ISBN(電子版)9781728199191
DOI
出版ステータス出版済み - 11月 2020
外部発表はい
イベント8th International Symposium on Computing and Networking Workshops, CANDARW 2020 - Virtual, Naha, 日本
継続期間: 11月 24 202011月 27 2020

出版物シリーズ

名前Proceedings - 2020 8th International Symposium on Computing and Networking Workshops, CANDARW 2020

会議

会議8th International Symposium on Computing and Networking Workshops, CANDARW 2020
国/地域日本
CityVirtual, Naha
Period11/24/2011/27/20

!!!All Science Journal Classification (ASJC) codes

  • コンピュータ ネットワークおよび通信
  • コンピュータ サイエンスの応用
  • ハードウェアとアーキテクチャ
  • 計算数学
  • 制御と最適化

フィンガープリント

「Performance Evaluation of Accurate Matrix-Matrix Multiplication on GPU Using Sparse Matrix Multiplications」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル