TY - JOUR
T1 - Performance evaluation of an adaptive self-organizing frequency reuse approach for OFDMA downlink
AU - Elwekeil, Mohamed
AU - Alghoniemy, Masoud
AU - Muta, Osamu
AU - Abdel-Rahman, Adel B.
AU - Gacanin, Haris
AU - Furukawa, Hiroshi
N1 - Funding Information:
Institute of Electronics, Information and Communication Engineering (IEICE). He established IEICE Europe Section. He is an Associate Editor of IET Communications and IEICE Transactions on Communications. He acted as a chair, review and technical program committee member of various technical journals and conferences. He is a recipient of IEICE Communication System Study Group (2015) Award, the 2013 Alcatel-Lucent Award of Excellence, the 2012 KDDI Foundation Research Award, the 2009 KDDI Foundation Research Grant Award, the 2008 Japan Society for Promotion of Science (JSPS) Postdoctoral Fellowships for Foreign Researchers, the 2005 Active Research Award in Radio Communications, 2005 Vehicular Technology Conference (VTC 2005-Fall) Student Paper Award from IEEE VTS Japan Chapter and the 2004 Institute of IEICE Society Young Researcher Award. He was awarded by Japanese Government (MEXT) Research Scholarship in 2002.
Publisher Copyright:
© 2017, Springer Science+Business Media, LLC.
PY - 2019/2/15
Y1 - 2019/2/15
N2 - Orthogonal frequency division multiple access (OFDMA) is extensively utilized for the downlink of cellular systems such as long term evolution (LTE) and LTE advanced. In OFDMA cellular networks, orthogonal resource blocks can be used within each cell. However, the available resources are rare and so those resources have to be reused by adjacent cells in order to achieve high spectral efficiency. This leads to inter-cell interference (ICI). Thus, ICI coordination among neighboring cells is very important for the performance improvement of cellular systems. Fractional frequency reuse (FFR) has been widely adopted as an effective solution that improves the throughput performance of cell edge users. However, FFR does not account for the varying nature of the channel. Moreover, it exaggerates in caring about the cell edge users at the price of cell inner users. Therefore, effective frequency reuse approaches that consider the weak points of FFR should be considered. In this paper, we present an adaptive self-organizing frequency reuse approach that is based on dividing every cell into two regions, namely, cell-inner and cell-outer regions; and minimizing the total interference encountered by all users in every region. Unlike the traditional FFR schemes, the proposed approach adjusts itself to the varying nature of the wireless channel. Furthermore, we derive the optimal value of the inner radius at which the total throughput of the inner users of the home cell is as close as possible to the total throughput of its outer users. Simulation results show that the proposed adaptive approach has better total throughput of both home cell and all 19 cells than the counterparts of strict FFR, even when all cells are fully loaded, where other algorithms in the literature failed to outperform strict FFR. The improved throughput means that higher spectral efficiency can be achieved; i.e., the spectrum, which is the most precious resource in wireless communication, can be utilized efficiently. In addition, the proposed algorithm can provide significant power saving, that can reach 50% compared to strict FFR, while not penalizing the throughput performance.
AB - Orthogonal frequency division multiple access (OFDMA) is extensively utilized for the downlink of cellular systems such as long term evolution (LTE) and LTE advanced. In OFDMA cellular networks, orthogonal resource blocks can be used within each cell. However, the available resources are rare and so those resources have to be reused by adjacent cells in order to achieve high spectral efficiency. This leads to inter-cell interference (ICI). Thus, ICI coordination among neighboring cells is very important for the performance improvement of cellular systems. Fractional frequency reuse (FFR) has been widely adopted as an effective solution that improves the throughput performance of cell edge users. However, FFR does not account for the varying nature of the channel. Moreover, it exaggerates in caring about the cell edge users at the price of cell inner users. Therefore, effective frequency reuse approaches that consider the weak points of FFR should be considered. In this paper, we present an adaptive self-organizing frequency reuse approach that is based on dividing every cell into two regions, namely, cell-inner and cell-outer regions; and minimizing the total interference encountered by all users in every region. Unlike the traditional FFR schemes, the proposed approach adjusts itself to the varying nature of the wireless channel. Furthermore, we derive the optimal value of the inner radius at which the total throughput of the inner users of the home cell is as close as possible to the total throughput of its outer users. Simulation results show that the proposed adaptive approach has better total throughput of both home cell and all 19 cells than the counterparts of strict FFR, even when all cells are fully loaded, where other algorithms in the literature failed to outperform strict FFR. The improved throughput means that higher spectral efficiency can be achieved; i.e., the spectrum, which is the most precious resource in wireless communication, can be utilized efficiently. In addition, the proposed algorithm can provide significant power saving, that can reach 50% compared to strict FFR, while not penalizing the throughput performance.
UR - http://www.scopus.com/inward/record.url?scp=85028775776&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85028775776&partnerID=8YFLogxK
U2 - 10.1007/s11276-017-1571-5
DO - 10.1007/s11276-017-1571-5
M3 - Article
AN - SCOPUS:85028775776
VL - 25
SP - 507
EP - 519
JO - Wireless Networks
JF - Wireless Networks
SN - 1022-0038
IS - 2
ER -