Periodic orbits and chaos in fast-slow systems with Bogdanov-Takens type fold points

Hayato Chiba

研究成果: ジャーナルへの寄稿学術誌査読

21 被引用数 (Scopus)

抄録

The existence of stable periodic orbits and chaotic invariant sets of singularly perturbed problems of fast-slow type having Bogdanov-Takens bifurcation points in its fast subsystem is proved by means of the geometric singular perturbation method and the blow-up method. In particular, the blow-up method is effectively used for analyzing the flow near the Bogdanov-Takens type fold point in order to show that a slow manifold near the fold point is extended along the Boutroux's tritronquée solution of the first Painlevé equation in the blow-up space.

本文言語英語
ページ(範囲)112-160
ページ数49
ジャーナルJournal of Differential Equations
250
1
DOI
出版ステータス出版済み - 1月 1 2011

!!!All Science Journal Classification (ASJC) codes

  • 分析
  • 応用数学

フィンガープリント

「Periodic orbits and chaos in fast-slow systems with Bogdanov-Takens type fold points」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル