Periodic pattern formation in reaction-diffusion systems: An introduction for numerical simulation

Takashi Miura, Philip K. Maini

研究成果: Contribution to journalReview article査読

28 被引用数 (Scopus)

抄録

The aim of the present review is to provide a comprehensive explanation of Turing reaction-diffusion systems in sufficient detail to allow readers to perform numerical calculations themselves. The reaction-diffusion model is widely studied in the field of mathematical biology, serves as a powerful paradigm model for self-organization and is beginning to be applied to actual experimental systems in developmental biology. Despite the increase in current interest, the model is not well understood among experimental biologists, partly because appropriate introductory texts are lacking. In the present review, we provide a detailed description of the definition of the Turing reaction-diffusion model that is comprehensible without a special mathematical background, then illustrate a method for reproducing numerical calculations with Microsoft Excel. We then show some examples of the patterns generated by the model. Finally, we discuss future prospects for the interdisciplinary field of research involving mathematical approaches in developmental biology.

本文言語英語
ページ(範囲)112-123
ページ数12
ジャーナルAnatomical Science International
79
3
DOI
出版ステータス出版済み - 9 2004
外部発表はい

All Science Journal Classification (ASJC) codes

  • 解剖学

フィンガープリント

「Periodic pattern formation in reaction-diffusion systems: An introduction for numerical simulation」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル