Personalized movie recommendation system based on support vector machine and improved particle swarm optimization

Xibin Wang, Fengji Luo, Chunyan Sang, Jun Zeng, Sachio Hirokawa

    研究成果: ジャーナルへの寄稿学術誌査読

    14 被引用数 (Scopus)

    抄録

    With the rapid development of information andWeb technologies, people are facing 'information overload' in their daily lives. The personalized recommendation system (PRS) is an effective tool to assist users extract meaningful information from the big data. Collaborative filtering (CF) is one of the most widely used personalized recommendation techniques to recommend the personalized products for users. However, the conventional CF technique has some limitations, such as the low accuracy of of similarity calculation, cold start problem, etc. In this paper, a PRS model based on the Support Vector Machine (SVM) is proposed. The proposed model not only considers the items' content information, but also the users' demographic and behavior information to fully capture the users' interests and preferences. An improved Particle Swarm Optimization (PSO) algorithm is also proposed to improve the performance of the model. The efficiency of the proposed method is verified by multiple benchmark datasets.

    本文言語英語
    ページ(範囲)285-293
    ページ数9
    ジャーナルIEICE Transactions on Information and Systems
    E100D
    2
    DOI
    出版ステータス出版済み - 2月 2017

    !!!All Science Journal Classification (ASJC) codes

    • ソフトウェア
    • ハードウェアとアーキテクチャ
    • コンピュータ ビジョンおよびパターン認識
    • 電子工学および電気工学
    • 人工知能

    フィンガープリント

    「Personalized movie recommendation system based on support vector machine and improved particle swarm optimization」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル