Ph-responsive self-assembly of designer aromatic peptide amphiphiles and enzymatic post-modification of assembled structures

Rie Wakabayashi, Ayato Higuchi, Hiroki Obayashi, Masahiro Goto, Noriho Kamiya

研究成果: Contribution to journalArticle査読

抄録

Supramolecular fibrous materials in biological systems play important structural and functional roles, and therefore, there is a growing interest in synthetic materials that mimic such fibrils, especially those bearing enzymatic reactivity. In this study, we investigated the self-assembly and enzymatic post-modification of short aromatic peptide amphiphiles (PAs), Fmoc-LnQG (n = 2 or 3), which contain an LQG recognition unit for microbial transglutaminase (MTG). These aromatic PAs self-assemble into fibrous structures via π-π stacking interactions between the Fmoc groups and hydrogen bonds between the peptides. The intermolecular interactions and morphologies of the assemblies were influenced by the solution pH because of the change in the ionization states of the C-terminal carboxy group of the peptides. Moreover, MTG-catalyzed post-modification of a small fluorescent molecule bearing an amine group also showed pH dependency, where the enzymatic reaction rate was increased at higher pH, which may be because of the higher nucleophilicity of the amine group and the electrostatic interaction between MTG and the self-assembled Fmoc-LnQG. Finally, the accumulation of the fluorescent molecule on these assembled materials was directly observed by confocal fluorescence images. Our study provides a method to accumulate functional molecules on supramolecular structures enzymatically with the morphology control.

本文言語英語
論文番号3459
ジャーナルInternational journal of molecular sciences
22
7
DOI
出版ステータス出版済み - 4 1 2021

All Science Journal Classification (ASJC) codes

  • Catalysis
  • Molecular Biology
  • Spectroscopy
  • Computer Science Applications
  • Physical and Theoretical Chemistry
  • Organic Chemistry
  • Inorganic Chemistry

フィンガープリント 「Ph-responsive self-assembly of designer aromatic peptide amphiphiles and enzymatic post-modification of assembled structures」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル