Phase contrast time-lapse microscopy datasets with automated and manual cell tracking annotations

Dai Fei Elmer Ker, Sungeun Eom, Sho Sanami, Ryoma Bise, Corinne Pascale, Zhaozheng Yin, Seung Il Huh, Elvira Osuna-Highley, Silvina N. Junkers, Casey J. Helfrich, Peter Yongwen Liang, Jiyan Pan, Soojin Jeong, Steven S. Kang, Jinyu Liu, Ritchie Nicholson, Michael F. Sandbothe, Phu T. Van, Anan Liu, Mei ChenTakeo Kanade, Lee E. Weiss, Phil G. Campbell

研究成果: Contribution to journalArticle査読

13 被引用数 (Scopus)

抄録

Phase contrast time-lapse microscopy is a non-destructive technique that generates large volumes of image-based information to quantify the behaviour of individual cells or cell populations. To guide the development of algorithms for computer-aided cell tracking and analysis, 48 time-lapse image sequences, each spanning approximately 3.5 days, were generated with accompanying ground truths for C2C12 myoblast cells cultured under 4 different media conditions, including with fibroblast growth factor 2 (FGF2), bone morphogenetic protein 2 (BMP2), FGF2 + BMP2, and control (no growth factor). The ground truths generated contain information for tracking at least 3 parent cells and their descendants within these datasets and were validated using a two-tier system of manual curation. This comprehensive, validated dataset will be useful in advancing the development of computer-aided cell tracking algorithms and function as a benchmark, providing an invaluable opportunity to deepen our understanding of individual and population-based cell dynamics for biomedical research.

本文言語英語
論文番号180237
ジャーナルScientific Data
5
DOI
出版ステータス出版済み - 2018

All Science Journal Classification (ASJC) codes

  • 統計学および確率
  • 情報システム
  • 教育
  • コンピュータ サイエンスの応用
  • 統計学、確率および不確実性
  • 図書館情報学

フィンガープリント

「Phase contrast time-lapse microscopy datasets with automated and manual cell tracking annotations」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル