TY - JOUR
T1 - Phosphatidylserine liposome multilayers mediate the M1-to-M2 macrophage polarization to enhance bone tissue regeneration
AU - Toita, Riki
AU - Kang, Jeong Hun
AU - Tsuchiya, Akira
N1 - Funding Information:
This work was supported by JSPS KAKENHI [grant numbers JP16K21212, JP18K12091, JP21H03833]. We thank Ms. Eiko Shimizu for her assistance with the experiments. RAW 264 and MC3T3-E1 cells were provided by the RIKEN BRC through the National BioResource Project of the MEXT/AMED, Japan.
Publisher Copyright:
© 2022 Acta Materialia Inc.
PY - 2022/12
Y1 - 2022/12
N2 - An appropriate immune microenvironment, governed by macrophages, is essential for rapid tissue regeneration after biomaterial implantation. The macrophage phenotypes, M1 (inflammatory) and M2 (anti-inflammatory/healing), exert opposing effects on the repair of various tissues. In this study, a new strategy to promote tissue repair and tissue-to-biomaterial integration by M1-to-M2 macrophage transition using artificial apoptotic cell mimetics (phosphatidylserine liposomes; PSLs) was developed using bone as a model tissue. Titanium was also selected as a model substrate material because it is widely used for dental and orthopedic implants. Titanium implants were functionalized with multilayers via layer-by-layer assembly of cationic protamine and negatively charged PSLs that were chemically stabilized to prevent disruption of lipid bilayers. Samples carrying PSL multilayers could drive M1-type macrophages into M2-biased phenotypes, resulting in a dramatic change in macrophage secretion for tissue regeneration. In a rat femur implantation model, the PSL-multilayer-coated implant displayed augmented de novo bone formation and bone-to-implant integration, associated with an increased M1-to-M2-like phenotypic transition. This triggered the proper generation and activation of bone-forming osteoblasts and bone-resorbing osteoclasts relative to their uncoated counterparts. This study demonstrates the benefit of local M1-to-M2 macrophage polarization induced by PSL-multilayers constructed on implants for potent bone regeneration and bone-to-implant integration. The results of this study may help in the design of new immunomodulatory biomaterials. Statement of significance: Effective strategies for tissue regeneration are essential in the clinical practice. The macrophage phenotypes, M1 (inflammatory) and M2 (anti-inflammatory/healing), exert opposing effects on the repair of various tissues. Artificially produced phosphatidylserine-containing liposomes (PSLs) can induce M2 macrophage polarization by mimicking the inverted plasma membranes of apoptotic cells. This study demonstrates the advantages of local M1-to-M2 macrophage polarization induced by PSL-multilayers constructed on implants for effective bone regeneration and osseointegration (bone-to-implant integration). Mechanistically, M2 macrophages promote osteogenesis but inhibit osteoclastogenesis, and M1 macrophages vice versa. We believe that our study makes a significant contribution to the design of new immunomodulatory biomaterials for regenerative medicine because it is the first to validate the benefit of PSLs for tissue regeneration.
AB - An appropriate immune microenvironment, governed by macrophages, is essential for rapid tissue regeneration after biomaterial implantation. The macrophage phenotypes, M1 (inflammatory) and M2 (anti-inflammatory/healing), exert opposing effects on the repair of various tissues. In this study, a new strategy to promote tissue repair and tissue-to-biomaterial integration by M1-to-M2 macrophage transition using artificial apoptotic cell mimetics (phosphatidylserine liposomes; PSLs) was developed using bone as a model tissue. Titanium was also selected as a model substrate material because it is widely used for dental and orthopedic implants. Titanium implants were functionalized with multilayers via layer-by-layer assembly of cationic protamine and negatively charged PSLs that were chemically stabilized to prevent disruption of lipid bilayers. Samples carrying PSL multilayers could drive M1-type macrophages into M2-biased phenotypes, resulting in a dramatic change in macrophage secretion for tissue regeneration. In a rat femur implantation model, the PSL-multilayer-coated implant displayed augmented de novo bone formation and bone-to-implant integration, associated with an increased M1-to-M2-like phenotypic transition. This triggered the proper generation and activation of bone-forming osteoblasts and bone-resorbing osteoclasts relative to their uncoated counterparts. This study demonstrates the benefit of local M1-to-M2 macrophage polarization induced by PSL-multilayers constructed on implants for potent bone regeneration and bone-to-implant integration. The results of this study may help in the design of new immunomodulatory biomaterials. Statement of significance: Effective strategies for tissue regeneration are essential in the clinical practice. The macrophage phenotypes, M1 (inflammatory) and M2 (anti-inflammatory/healing), exert opposing effects on the repair of various tissues. Artificially produced phosphatidylserine-containing liposomes (PSLs) can induce M2 macrophage polarization by mimicking the inverted plasma membranes of apoptotic cells. This study demonstrates the advantages of local M1-to-M2 macrophage polarization induced by PSL-multilayers constructed on implants for effective bone regeneration and osseointegration (bone-to-implant integration). Mechanistically, M2 macrophages promote osteogenesis but inhibit osteoclastogenesis, and M1 macrophages vice versa. We believe that our study makes a significant contribution to the design of new immunomodulatory biomaterials for regenerative medicine because it is the first to validate the benefit of PSLs for tissue regeneration.
UR - http://www.scopus.com/inward/record.url?scp=85140605761&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85140605761&partnerID=8YFLogxK
U2 - 10.1016/j.actbio.2022.10.024
DO - 10.1016/j.actbio.2022.10.024
M3 - Article
C2 - 36273800
AN - SCOPUS:85140605761
SN - 1742-7061
VL - 154
SP - 583
EP - 596
JO - Acta Biomaterialia
JF - Acta Biomaterialia
ER -