Photoluminescence Quenching Probes Spin Conversion and Exciton Dynamics in Thermally Activated Delayed Fluorescence Materials

Brett Yurash, Hajime Nakanotani, Yoann Olivier, David Beljonne, Chihaya Adachi, Thuc Quyen Nguyen

研究成果: ジャーナルへの寄稿学術誌査読

27 被引用数 (Scopus)

抄録

Fluorescent materials that efficiently convert triplet excitons into singlets through reverse intersystem crossing (RISC) rival the efficiencies of phosphorescent state-of-the-art organic light-emitting diodes. This upconversion process, a phenomenon known as thermally activated delayed fluorescence (TADF), is dictated by the rate of RISC, a material-dependent property that is challenging to determine experimentally. In this work, a new analytical model is developed which unambiguously determines the magnitude of RISC, as well as several other important photophysical parameters such as exciton diffusion coefficients and lengths, all from straightforward time-resolved photoluminescence measurements. From a detailed investigation of five TADF materials, important structure–property relationships are derived and a brominated derivative of 2,4,5,6-tetrakis(carbazol-9-yl)isophthalonitrile that has an exciton diffusion length of over 40 nm and whose excitons interconvert between the singlet and triplet states ≈36 times during one lifetime is identified.

本文言語英語
論文番号1804490
ジャーナルAdvanced Materials
31
21
DOI
出版ステータス出版済み - 5月 24 2019

!!!All Science Journal Classification (ASJC) codes

  • 材料科学(全般)
  • 材料力学
  • 機械工学

フィンガープリント

「Photoluminescence Quenching Probes Spin Conversion and Exciton Dynamics in Thermally Activated Delayed Fluorescence Materials」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル