Physiological and genetic basis for self-aggregation of a thermophilic hydrogenotrophic methanogen, Methanothermobacter strain CaT2

Tomoyuki Kosaka, Hidehiro Toh, Asao Fujiyama, Yoshiyuki Sakaki, Keiji Watanabe, Xian Ying Meng, Satoshi Hanada, Atsushi Toyoda

研究成果: Contribution to journalArticle査読

5 被引用数 (Scopus)

抄録

Summary: Several thermophilic hydrogenotrophic methanogens naturally aggregate in their habitats in association with hydrogen-producing bacteria for efficient transfer of the methane fermentation intermediates to produce methane. However, physiology of aggregation and the identity of aggregation-specific genes remain to be elucidated. Here, we isolated and characterized a hydrogen and formate-utilizing Methanothermobacter sp. CaT2 that is capable of self-aggregation and utilizing formate. CaT2 produced methane from propionate oxidation in association with a syntrophic propionate-oxidizing bacterium faster than other methanogens, including Methanothermobacter thermautotrophicus ΔH and Methanothermobacter thermautotrophicusZ-245. CaT2 also aggregated throughout the culture period and was coated with polysaccharides, which was not found on the ΔH and Z-245 cells. Sugar content (particularly of rhamnose and mannose) was also higher in the CaT2 cells than the ΔH and Z-245 cells. Comparative genomic analysis of CaT2 indicated that four candidate genes, all of which encode glycosyltransferase, were involved in aggregation of CaT2. Transcriptional analysis showed that one glycosyltransferase gene was expressed at relatively high levels under normal growth conditions. The polysaccharide layer on the CaT2 cell surface, which is probably assembled by these glycosyltransferases, may be involved in cell aggregation.

本文言語英語
ページ(範囲)268-277
ページ数10
ジャーナルEnvironmental Microbiology Reports
6
3
DOI
出版ステータス出版済み - 6 2014

All Science Journal Classification (ASJC) codes

  • 生態、進化、行動および分類学
  • 農業および生物科学(その他)

フィンガープリント

「Physiological and genetic basis for self-aggregation of a thermophilic hydrogenotrophic methanogen, Methanothermobacter strain CaT2」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル