Pitfalls for categorizations of objective interestingness measures for rule discovery

研究成果: 書籍/レポート タイプへの寄稿

18 被引用数 (Scopus)

抄録

In this paper, we point out four pitfalls for categorizations of objective interestingness measures for rule discovery. Rule discovery, which is extensively studied in data mining, suffers from the problem of outputting a huge number of rules. An objective interestingness measure can be used to estimate the potential usefulness of a discovered rule based on the given data set thus hopefully serves as a countermeasure to circumvent this problem. Various measures have been proposed, resulting systematic attempts for categorizing such measures. We believe that such attempts are subject to four kinds of pitfalls: data bias, rule bias, expert bias, and search bias. The main objective of this paper is to issue an alert for the pitfalls which are harmful to one of the most important research topics in data mining. We also list desiderata in categorizing objective interestingness measures.

本文言語英語
ホスト出版物のタイトルStatistical Implicative Analysis
ホスト出版物のサブタイトルTheory and Applications
編集者Régis Gras, Einoshin Suzuki, Fabrice Guillet, Filippo Spagnolo
ページ383-395
ページ数13
DOI
出版ステータス出版済み - 7月 17 2008

出版物シリーズ

名前Studies in Computational Intelligence
127
ISSN(印刷版)1860-949X

!!!All Science Journal Classification (ASJC) codes

  • 人工知能

フィンガープリント

「Pitfalls for categorizations of objective interestingness measures for rule discovery」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル