Positive- and negative-mass solitons in Bose-Einstein condensates with optical lattices

H. Sakaguchi, B. A. Malomed

    研究成果: Contribution to journalConference article査読

    3 被引用数 (Scopus)

    抄録

    We study the dynamics of solitons in Bose-Einstein condensates (BECs) loaded into an optical lattice (OL), which is combined with an external parabolic potential. Chiefly, the one-dimensional (1D) case is considered. First, we demonstrate analytically that, in the case of the repulsive BEC, where the soliton is of the gap type, its effective mass is negative. In accordance with this, we demonstrate that such a soliton cannot be held by the usual parabolic trap, but it can be captured (performing harmonic oscillations) by an anti-trapping inverted parabolic potential. We also study the motion of the soliton in a long system, concluding that, in the cases of both the positive and negative mass, it moves freely, provided that its amplitude is below a certain critical value; above it, the soliton's velocity decreases due to the interaction with the OL. Transition between the two regimes proceeds through slow erratic motion of the soliton. Extension of the analysis for the 2D case is briefly outlined; in particular, novel results are existence of stable higher-order lattice vortices, with the vorticity S≥2, and quadrupoles.

    本文言語英語
    ページ(範囲)492-501
    ページ数10
    ジャーナルMathematics and Computers in Simulation
    69
    5-6
    DOI
    出版ステータス出版済み - 8 5 2005
    イベントNonlinear Waves: Computation and Theory IV -
    継続期間: 4 7 20034 10 2003

    All Science Journal Classification (ASJC) codes

    • 理論的コンピュータサイエンス
    • コンピュータ サイエンス(全般)
    • 数値解析
    • モデリングとシミュレーション
    • 応用数学

    フィンガープリント

    「Positive- and negative-mass solitons in Bose-Einstein condensates with optical lattices」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル