Poster: Flexible Function Estimation of IoT Malware Using Graph Embedding Technique

Kei Oshio, Satoshi Takada, Chansu Han, Akira Tanaka, Jun'ichi Takeuchi

研究成果: 書籍/レポート タイプへの寄稿会議への寄与

抄録

Most IoT malware is variants generated by editing and reusing parts of the functions based on publicly available source codes. In our previous study, we proposed a method to estimate the functions of a specimen using the Function Call Sequence Graph (FCSG), which is a directed graph of execution sequence of function calls. In the FCSG-based method, the subgraph corresponding to a malware functionality is manually created and called a signature-FSCG. The specimens with the signature-FSCG are expected to have the corresponding functionality. However, this method cannot detect the specimens with a slightly different subgraph from the signature-FSCG. This paper found that these specimens were supposed to have the same functionality for a signature-FSCG. These specimens need more flexible signature matching, and we propose a graph embedding technique to realize it.

本文言語英語
ホスト出版物のタイトル2022 IEEE Symposium on Computers and Communications, ISCC 2022
出版社Institute of Electrical and Electronics Engineers Inc.
ISBN(電子版)9781665497923
DOI
出版ステータス出版済み - 2022
イベント27th IEEE Symposium on Computers and Communications, ISCC 2022 - Rhodes, ギリシャ
継続期間: 6月 30 20227月 3 2022

出版物シリーズ

名前Proceedings - IEEE Symposium on Computers and Communications
2022-June
ISSN(印刷版)1530-1346

会議

会議27th IEEE Symposium on Computers and Communications, ISCC 2022
国/地域ギリシャ
CityRhodes
Period6/30/227/3/22

!!!All Science Journal Classification (ASJC) codes

  • ソフトウェア
  • 信号処理
  • 数学 (全般)
  • コンピュータ サイエンスの応用
  • コンピュータ ネットワークおよび通信

フィンガープリント

「Poster: Flexible Function Estimation of IoT Malware Using Graph Embedding Technique」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル