Predication of Japanese green tea (Sen-cha) ranking by volatile profiling using gas chromatography mass spectrometry and multivariate analysis

Kanokwan Jumtee, Hajime Komura, Takeshi Bamba, Eiichiro Fukusaki

研究成果: Contribution to journalArticle査読

56 被引用数 (Scopus)

抄録

The sensory quality ranking of Japanese green tea (Sen-cha) was evaluated and predicted using volatile profiling and multivariate data analyses. The volatile constituents were extracted from tea infusion using vacuum hydrodistillation and analyzed using GC/MS. A quality of green tea could be discriminated to a high or low grade regarding the volatile profile by partial least squares discriminant analysis (PLS-DA). A quality ranking predictive model was developed from the relationship between subjective attributes (sensory quality ranking) and objective attributes (volatile profile) using partial least squares projections to latent structures together with the preprocessing filtering technique, orthogonal signal correction (OSC). Several volatile compounds highly contributed to model prediction were identified as various odor-active compounds, including geraniol, indole, linalool, cis-jasmone, dihydroactinidiolide, 6-chloroindole, methyl jasmonate, coumarin, trans-geranylacetone, linalool oxides, 5,6-epoxy-β-ionone, phytol, and phenylethyl alcohol. The whole fingerprints of these volatile compounds could be possible markers for the overall quality evaluation of green tea beverage.

本文言語英語
ページ(範囲)252-255
ページ数4
ジャーナルJournal of Bioscience and Bioengineering
112
3
DOI
出版ステータス出版済み - 9 2011
外部発表はい

All Science Journal Classification (ASJC) codes

  • バイオテクノロジー
  • バイオエンジニアリング
  • 応用微生物学とバイオテクノロジー

フィンガープリント

「Predication of Japanese green tea (Sen-cha) ranking by volatile profiling using gas chromatography mass spectrometry and multivariate analysis」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル