Preparation of La0.9Sr0.1Ga0.8Mg0.2O3 film by pulse laser deposition (PLD) method on porous Ni–Fe metal substrate for CO2 electrolysis

Tatsumi Ishihara, Hajime Kusaba, Hack Ho Kim, Biyon Su Kang

研究成果: ジャーナルへの寄稿記事

抄録

Preparation of metal supported La0.9Sr0.1Ga0.8Mg0.2O3 (LSGM) thin film cell for CO2 electrolysis was studied and by using selective reduction method of NiO–NiFe2O4, it was found that porous Ni–Fe(9:1) based substrate with ca.30% porosity was successfully prepared without large volume change resulting in the successful preparation of LaGaO3 dense thin film on metal substrate. By using Ce0.8Sm0.2O2 (SDC) thin film, Ni diffusion from Ni–Fe substrate was prevented. CO2 electrolysis was performed on the prepared LSGM/SDC on Ni–Fe porous substrate. When Sm0.5Sr0.5CoO3 (SSC) anode was prepared by screen print method using SSC powder, sintering of SSC powder was significantly occurred resulting in the large IR loss and overpotential. In contrast, when SSC anode layer was deposited by PLD (30 min) after LSGM/ SDC layer deposition, tight contact between SSC anode and LSGM electrolyte film was obtained and the large CO2 electrolysis current of 3 and 0.5 A/cm2 were achieved at 973 and 773 K, respectively. Impedance analysis suggests that increased CO2 electrolysis current was obtained by decreased IR loss and electrode overpotential.

元の言語英語
ページ(範囲)613-618
ページ数6
ジャーナルisij international
59
発行部数4
DOI
出版物ステータス出版済み - 4 2019

Fingerprint

Electrolysis
Laser pulses
Metals
Anodes
Substrates
Thin films
Powders
Electrolytes
Sintering
Porosity
Electrodes

All Science Journal Classification (ASJC) codes

  • Mechanics of Materials
  • Mechanical Engineering
  • Metals and Alloys
  • Materials Chemistry

これを引用

Preparation of La0.9Sr0.1Ga0.8Mg0.2O3 film by pulse laser deposition (PLD) method on porous Ni–Fe metal substrate for CO2 electrolysis. / Ishihara, Tatsumi; Kusaba, Hajime; Kim, Hack Ho; Kang, Biyon Su.

:: isij international, 巻 59, 番号 4, 04.2019, p. 613-618.

研究成果: ジャーナルへの寄稿記事

@article{d00458151745436889c61b355f38d035,
title = "Preparation of La0.9Sr0.1Ga0.8Mg0.2O3 film by pulse laser deposition (PLD) method on porous Ni–Fe metal substrate for CO2 electrolysis",
abstract = "Preparation of metal supported La0.9Sr0.1Ga0.8Mg0.2O3 (LSGM) thin film cell for CO2 electrolysis was studied and by using selective reduction method of NiO–NiFe2O4, it was found that porous Ni–Fe(9:1) based substrate with ca.30{\%} porosity was successfully prepared without large volume change resulting in the successful preparation of LaGaO3 dense thin film on metal substrate. By using Ce0.8Sm0.2O2 (SDC) thin film, Ni diffusion from Ni–Fe substrate was prevented. CO2 electrolysis was performed on the prepared LSGM/SDC on Ni–Fe porous substrate. When Sm0.5Sr0.5CoO3 (SSC) anode was prepared by screen print method using SSC powder, sintering of SSC powder was significantly occurred resulting in the large IR loss and overpotential. In contrast, when SSC anode layer was deposited by PLD (30 min) after LSGM/ SDC layer deposition, tight contact between SSC anode and LSGM electrolyte film was obtained and the large CO2 electrolysis current of 3 and 0.5 A/cm2 were achieved at 973 and 773 K, respectively. Impedance analysis suggests that increased CO2 electrolysis current was obtained by decreased IR loss and electrode overpotential.",
author = "Tatsumi Ishihara and Hajime Kusaba and Kim, {Hack Ho} and Kang, {Biyon Su}",
year = "2019",
month = "4",
doi = "10.2355/isijinternational.ISIJINT-2018-350",
language = "English",
volume = "59",
pages = "613--618",
journal = "ISIJ International",
issn = "0915-1559",
publisher = "Iron and Steel Institute of Japan",
number = "4",

}

TY - JOUR

T1 - Preparation of La0.9Sr0.1Ga0.8Mg0.2O3 film by pulse laser deposition (PLD) method on porous Ni–Fe metal substrate for CO2 electrolysis

AU - Ishihara, Tatsumi

AU - Kusaba, Hajime

AU - Kim, Hack Ho

AU - Kang, Biyon Su

PY - 2019/4

Y1 - 2019/4

N2 - Preparation of metal supported La0.9Sr0.1Ga0.8Mg0.2O3 (LSGM) thin film cell for CO2 electrolysis was studied and by using selective reduction method of NiO–NiFe2O4, it was found that porous Ni–Fe(9:1) based substrate with ca.30% porosity was successfully prepared without large volume change resulting in the successful preparation of LaGaO3 dense thin film on metal substrate. By using Ce0.8Sm0.2O2 (SDC) thin film, Ni diffusion from Ni–Fe substrate was prevented. CO2 electrolysis was performed on the prepared LSGM/SDC on Ni–Fe porous substrate. When Sm0.5Sr0.5CoO3 (SSC) anode was prepared by screen print method using SSC powder, sintering of SSC powder was significantly occurred resulting in the large IR loss and overpotential. In contrast, when SSC anode layer was deposited by PLD (30 min) after LSGM/ SDC layer deposition, tight contact between SSC anode and LSGM electrolyte film was obtained and the large CO2 electrolysis current of 3 and 0.5 A/cm2 were achieved at 973 and 773 K, respectively. Impedance analysis suggests that increased CO2 electrolysis current was obtained by decreased IR loss and electrode overpotential.

AB - Preparation of metal supported La0.9Sr0.1Ga0.8Mg0.2O3 (LSGM) thin film cell for CO2 electrolysis was studied and by using selective reduction method of NiO–NiFe2O4, it was found that porous Ni–Fe(9:1) based substrate with ca.30% porosity was successfully prepared without large volume change resulting in the successful preparation of LaGaO3 dense thin film on metal substrate. By using Ce0.8Sm0.2O2 (SDC) thin film, Ni diffusion from Ni–Fe substrate was prevented. CO2 electrolysis was performed on the prepared LSGM/SDC on Ni–Fe porous substrate. When Sm0.5Sr0.5CoO3 (SSC) anode was prepared by screen print method using SSC powder, sintering of SSC powder was significantly occurred resulting in the large IR loss and overpotential. In contrast, when SSC anode layer was deposited by PLD (30 min) after LSGM/ SDC layer deposition, tight contact between SSC anode and LSGM electrolyte film was obtained and the large CO2 electrolysis current of 3 and 0.5 A/cm2 were achieved at 973 and 773 K, respectively. Impedance analysis suggests that increased CO2 electrolysis current was obtained by decreased IR loss and electrode overpotential.

UR - http://www.scopus.com/inward/record.url?scp=85065754012&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85065754012&partnerID=8YFLogxK

U2 - 10.2355/isijinternational.ISIJINT-2018-350

DO - 10.2355/isijinternational.ISIJINT-2018-350

M3 - Article

AN - SCOPUS:85065754012

VL - 59

SP - 613

EP - 618

JO - ISIJ International

JF - ISIJ International

SN - 0915-1559

IS - 4

ER -