TY - JOUR
T1 - Production and Release of Neuroprotective Tumor Necrosis Factor by P2X 7 Receptor-Activated Microglia
AU - Suzuki, Tomohisa
AU - Hide, Izumi
AU - Ido, Katsutoshi
AU - Kohsaka, Shinichi
AU - Inoue, Kazuhide
AU - Nakata, Yoshihiro
PY - 2004/1/7
Y1 - 2004/1/7
N2 - After a brain insult, ATP is released from injured cells and activates microglia. The microglia that are activated in this way then release a range of bioactive substances, one of which is tumor necrosis factor (TNF). The release of TNF appears to be dependent on the P2X7 receptor. The inhibitors 1,4-diamino-2,3-dicyano-1,4-bis[2-amino-phenylthio]butadiene (U0126), anthra[1,9-cd]pyrazol-6(2H)-one (SP600125), and 4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl) IH-imidazole (SB203580), which target MEK (mitogen-activated protein kinase kinase), JNK (c-Jun N-terminal kinase), and p38, respectively, all potently suppress the production of TNF in ATP-stimulated microglia, whereas the production of TNF mRNA is strongly inhibited by U0126 and SP600125. SB203580 did not affect the increased levels of TNF mRNA but did prevent TNF mRNA from accumulating in the cytoplasm. The ATP-provoked activation of JNK and p38 [but not extracellular signal-regulated kinase (ERK)] could be inhibited by brilliant blue G, a P2X7 receptor blocker, and by genistein and 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-D]pyrimidine, which are general and src-family-specific tyrosine kinase inhibitors, respectively. Most important, we found that treatment of the microglia in neuron-microglia cocultures with the P2X7 agonist 2′-3′ -0-(benzoyl-benzoyl) ATP led to significant reductions in glutamate-induced neuronal cell death, and that either TNF-α converting enzyme inhibitor or anti-TNF readily suppressed the protective effect implied by this result. Together, these findings indicate that both ERK and JNK are involved in the regulation of TNF mRNA expression, that p38 is involved in the nucleocytoplasmic transport of TNF mRNA, and that a PTK (protein tyrosine kinase), possibly a member of the src family, acts downstream of the P2X 7 receptor to activate JNK and p38. Finally, our data suggest that P2X7 receptor-activated microglia protect neurons against glutamate toxicity primarily because they are able to release TNF.
AB - After a brain insult, ATP is released from injured cells and activates microglia. The microglia that are activated in this way then release a range of bioactive substances, one of which is tumor necrosis factor (TNF). The release of TNF appears to be dependent on the P2X7 receptor. The inhibitors 1,4-diamino-2,3-dicyano-1,4-bis[2-amino-phenylthio]butadiene (U0126), anthra[1,9-cd]pyrazol-6(2H)-one (SP600125), and 4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl) IH-imidazole (SB203580), which target MEK (mitogen-activated protein kinase kinase), JNK (c-Jun N-terminal kinase), and p38, respectively, all potently suppress the production of TNF in ATP-stimulated microglia, whereas the production of TNF mRNA is strongly inhibited by U0126 and SP600125. SB203580 did not affect the increased levels of TNF mRNA but did prevent TNF mRNA from accumulating in the cytoplasm. The ATP-provoked activation of JNK and p38 [but not extracellular signal-regulated kinase (ERK)] could be inhibited by brilliant blue G, a P2X7 receptor blocker, and by genistein and 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-D]pyrimidine, which are general and src-family-specific tyrosine kinase inhibitors, respectively. Most important, we found that treatment of the microglia in neuron-microglia cocultures with the P2X7 agonist 2′-3′ -0-(benzoyl-benzoyl) ATP led to significant reductions in glutamate-induced neuronal cell death, and that either TNF-α converting enzyme inhibitor or anti-TNF readily suppressed the protective effect implied by this result. Together, these findings indicate that both ERK and JNK are involved in the regulation of TNF mRNA expression, that p38 is involved in the nucleocytoplasmic transport of TNF mRNA, and that a PTK (protein tyrosine kinase), possibly a member of the src family, acts downstream of the P2X 7 receptor to activate JNK and p38. Finally, our data suggest that P2X7 receptor-activated microglia protect neurons against glutamate toxicity primarily because they are able to release TNF.
UR - http://www.scopus.com/inward/record.url?scp=0842322759&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0842322759&partnerID=8YFLogxK
U2 - 10.1523/JNEUROSCI.3792-03.2004
DO - 10.1523/JNEUROSCI.3792-03.2004
M3 - Article
C2 - 14715932
AN - SCOPUS:0842322759
SN - 0270-6474
VL - 24
SP - 1
EP - 7
JO - Journal of Neuroscience
JF - Journal of Neuroscience
IS - 1
ER -