Putative cationic cell-wall-bound peroxidase homologues in arabidopsis, AtPrx2, AtPrx25, and AtPrx71, are involved in lignification

Jun Shigeto, Yuko Kiyonaga, Koki Fujita, Ryuichiro Kondo, Yuji Tsutsumi

研究成果: Contribution to journalArticle査読

58 被引用数 (Scopus)

抄録

The final step of lignin biosynthesis, which is catalyzed by a plant peroxidase, is the oxidative coupling of the monolignols to growing lignin polymers. Cationic cell-wall-bound peroxidase (CWPO-C) from poplar callus is a unique enzyme that has oxidative activity for both monolignols and synthetic lignin polymers. This study shows that putative CWPO-C homologues in Arabidopsis, AtPrx2, AtPrx25, and AtPrx71, are involved in lignin biosynthesis. Analysis of stem tissue using the acetyl bromide method and derivatization followed by the reductive cleavage method revealed a significant decrease in the total lignin content of ATPRX2 and ATPRX25 deficient mutants and altered lignin structures in ATPRX2, ATPRX25, and ATPRX71 deficient mutants. Among Arabidopsis peroxidases, AtPrx2 and AtPrx25 conserve a tyrosine residue on the protein surface, and this tyrosine may act as a substrate oxidation site as in the case of CWPO-C. AtPrx71 has the highest amino acid identity with CWPO-C. The results suggest a role for CWPO-C and CWPO-C-like peroxidases in the lignification of vascular plant cell walls.

本文言語英語
ページ(範囲)3781-3788
ページ数8
ジャーナルJournal of Agricultural and Food Chemistry
61
16
DOI
出版ステータス出版済み - 4 24 2013

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Agricultural and Biological Sciences(all)

フィンガープリント 「Putative cationic cell-wall-bound peroxidase homologues in arabidopsis, AtPrx2, AtPrx25, and AtPrx71, are involved in lignification」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル