Quantum invariants, modular forms, and lattice points II

研究成果: Contribution to journalArticle査読

10 被引用数 (Scopus)

抄録

We study the SU(2) Witten-Reshetikhin-Turaev (WRT) invariant for the Seifert fibered homology spheres with M -exceptional fibers. We show that the WRT invariant can be written in terms of (differential of) the Eichler integrals of modular forms with weight 12 and 32. By use of nearly modular property of the Eichler integrals we shall obtain asymptotic expansions of the WRT invariant in the large- N limit. We further reveal that the number of the gauge equivalent classes of flat connections, which dominate the asymptotics of the WRT invariant in N→∞, is related to the number of integral lattice points inside the M -dimensional tetrahedron.

本文言語英語
論文番号102301
ジャーナルJournal of Mathematical Physics
47
10
DOI
出版ステータス出版済み - 2006
外部発表はい

All Science Journal Classification (ASJC) codes

  • Statistical and Nonlinear Physics
  • Mathematical Physics

フィンガープリント 「Quantum invariants, modular forms, and lattice points II」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル