Quasi-classical descendants of disordered vertex models with boundaries

Antonio Di Lorenzo, Luigi Amico, Kazuhiro Hikami, Andreas Osterloh, Gaetano Giaquinta

研究成果: Contribution to journalArticle査読

21 被引用数 (Scopus)

抄録

We study descendants of inhomogeneous vertex models with boundary reflections when the spin-spin scattering is assumed to be quasi-classical. This corresponds to consider certain power expansion of the boundary-Yang-Baxter equation (or reflection equation). As final product, integrable su(2)-spin chains interacting with a long range with XXZ anisotropy are obtained. The spin-spin coupling constants are non-uniform, and a non-uniform tunable external magnetic field is applied; the latter can be obtained when the boundary conditions are assumed to be quasi-classical as well. The exact spectrum is achieved by algebraic Bethe ansatz. Having realized the su(2) operators in terms of fermions, the class of models we found turns out to describe confined fermions with pairing force interactions. The class of models presented in this paper is a one-parameter extension of certain Hamiltonians constructed previously. Extensions to su(n)-spin open chains are discussed.

本文言語英語
ページ(範囲)409-432
ページ数24
ジャーナルNuclear Physics B
644
3
DOI
出版ステータス出版済み - 11 18 2002
外部発表はい

All Science Journal Classification (ASJC) codes

  • 核物理学および高エネルギー物理学

フィンガープリント

「Quasi-classical descendants of disordered vertex models with boundaries」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル