RankSVM for offline signature verification

Yan Zheng, Yuchen Zheng, Wataru Ohyama, Daiki Suehiro, Seiichi Uchida

研究成果: Chapter in Book/Report/Conference proceedingConference contribution

2 被引用数 (Scopus)

抄録

Signature verification systems suffer from imbalanced learning, which imposes strict requirements on classifiers. The standard classification approaches, such as SVM, often degrade the performance for imbalanced data or require additional parameters for data balancing. In this study, as a new approach for signature verification, we use RankSVM as the writer-dependent classifiers, which theoretically guarantees the generalization performance for imbalanced data. To investigate the ability of RankSVM for solving imbalanced learning problems in signature verification tasks, the extensive experiments are conducted on bitmaps of GPDS-150, GPDS-300, GPDS-600, and GPDS-1000 datasets and deep features of GPDS-960 dataset. The experimental results demonstrate that the RankSVM-based approach obtains a nearly equivalent performance with the state-of-the-art method on deep features of the GPDS-960 dataset, and achieves significantly better performance than standard-SVM-based approach on bitmaps of GPDS-150, GPDS-300, GPDS-600, and GPDS-1000 datasets.

本文言語英語
ホスト出版物のタイトルProceedings - 15th IAPR International Conference on Document Analysis and Recognition, ICDAR 2019
出版社IEEE Computer Society
ページ928-933
ページ数6
ISBN(電子版)9781728128610
DOI
出版ステータス出版済み - 9 2019
イベント15th IAPR International Conference on Document Analysis and Recognition, ICDAR 2019 - Sydney, オーストラリア
継続期間: 9 20 20199 25 2019

出版物シリーズ

名前Proceedings of the International Conference on Document Analysis and Recognition, ICDAR
ISSN(印刷版)1520-5363

会議

会議15th IAPR International Conference on Document Analysis and Recognition, ICDAR 2019
国/地域オーストラリア
CitySydney
Period9/20/199/25/19

All Science Journal Classification (ASJC) codes

  • コンピュータ ビジョンおよびパターン認識

フィンガープリント

「RankSVM for offline signature verification」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル